亚微米尺度下薄膜系统的断裂力学

D. Kozic, R. Treml, R. Schongrundner, R. Brunner, D. Kiener, J. Zechner, T. Antretter, Hans-Peter Ganser
{"title":"亚微米尺度下薄膜系统的断裂力学","authors":"D. Kozic, R. Treml, R. Schongrundner, R. Brunner, D. Kiener, J. Zechner, T. Antretter, Hans-Peter Ganser","doi":"10.1109/EUROSIME.2015.7103088","DOIUrl":null,"url":null,"abstract":"Novel design of microelectronic components creates new issues concerning their reliability. Internal mechanical loading, e.g. from residual stresses, or external loading when the component is assembled into a microelectronic device, can cause failure via cracking or delamination. In this work, finite element simulations of micro-beam bending experiments for testing the fracture behavior of thin film metal composites deposited on a silicon substrate are presented. Due to the lattice mismatch between the materials, residual stresses are generated. Calculating the magnitude and distribution of these stresses is very important, as they add to the stresses produced by the external loads. Consequently, a stress free setting will behave differently compared to a structure with residual stresses. Additionally, crack propagation is affected by an interface to a material with different characteristics. In what follows, the variation of typical fracture parameters will be shown, depending on the residual stresses in the composite and on the crack position relative to the interface.","PeriodicalId":250897,"journal":{"name":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"45 13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fracture mechanics of thin film systems on the sub-micron scale\",\"authors\":\"D. Kozic, R. Treml, R. Schongrundner, R. Brunner, D. Kiener, J. Zechner, T. Antretter, Hans-Peter Ganser\",\"doi\":\"10.1109/EUROSIME.2015.7103088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novel design of microelectronic components creates new issues concerning their reliability. Internal mechanical loading, e.g. from residual stresses, or external loading when the component is assembled into a microelectronic device, can cause failure via cracking or delamination. In this work, finite element simulations of micro-beam bending experiments for testing the fracture behavior of thin film metal composites deposited on a silicon substrate are presented. Due to the lattice mismatch between the materials, residual stresses are generated. Calculating the magnitude and distribution of these stresses is very important, as they add to the stresses produced by the external loads. Consequently, a stress free setting will behave differently compared to a structure with residual stresses. Additionally, crack propagation is affected by an interface to a material with different characteristics. In what follows, the variation of typical fracture parameters will be shown, depending on the residual stresses in the composite and on the crack position relative to the interface.\",\"PeriodicalId\":250897,\"journal\":{\"name\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"volume\":\"45 13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2015.7103088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2015.7103088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

微电子元件的新设计产生了关于其可靠性的新问题。内部机械载荷,例如来自残余应力,或当组件组装成微电子设备时的外部载荷,可能会导致破裂或分层而导致故障。在这项工作中,提出了微束弯曲实验的有限元模拟,以测试沉积在硅衬底上的薄膜金属复合材料的断裂行为。由于材料之间的晶格不匹配,产生了残余应力。计算这些应力的大小和分布是非常重要的,因为它们增加了外部载荷产生的应力。因此,与有残余应力的结构相比,无应力设置的行为不同。此外,裂纹扩展受不同材料界面特性的影响。下面将显示典型断裂参数的变化,这取决于复合材料中的残余应力和相对于界面的裂纹位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fracture mechanics of thin film systems on the sub-micron scale
Novel design of microelectronic components creates new issues concerning their reliability. Internal mechanical loading, e.g. from residual stresses, or external loading when the component is assembled into a microelectronic device, can cause failure via cracking or delamination. In this work, finite element simulations of micro-beam bending experiments for testing the fracture behavior of thin film metal composites deposited on a silicon substrate are presented. Due to the lattice mismatch between the materials, residual stresses are generated. Calculating the magnitude and distribution of these stresses is very important, as they add to the stresses produced by the external loads. Consequently, a stress free setting will behave differently compared to a structure with residual stresses. Additionally, crack propagation is affected by an interface to a material with different characteristics. In what follows, the variation of typical fracture parameters will be shown, depending on the residual stresses in the composite and on the crack position relative to the interface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient simulation of thermo-mechanical stress in the on-chip metallization of power semiconductors Simulation driven design of novel integrated circuits - Part 1: Selection of the materials based on the Virtual DoE Applications of computational mechanics in stretchable electronics Prediction of package delamination based on μMMT and BST experiments Simulation of a flip chip bonding technique using reactive foils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1