{"title":"移动边缘计算中基于局域比的容量接入点功率控制方法","authors":"Qinghui Zhang, Weidong Li, Qian Su, Xuejie Zhang","doi":"10.1145/3546000.3546027","DOIUrl":null,"url":null,"abstract":"Terminal devices (TDs) connect to networks through access points (APs) integrated into the edge server. This provides a prerequisite for TDs to upload tasks to cloud data centers or offload them to edge servers for execution. In this process, signal coverage, data transmission, and task execution consume energy, and the energy consumption of signal coverage increases sharply as the radius increases. Lower power leads to less energy consumption in a given time segment. Thus, power control for APs is essential for reducing energy consumption. Our objective is to determine the power assignment for each AP with same capacity constraints such that all TDs are covered, and the total power is minimized. We define this problem as a minimum power capacitated cover (MPCC) problem and present a minimum local ratio (MLR) power control approach for this problem to obtain accurate results in polynomial time. Power assignments are chosen in a sequence of rounds. In each round, we choose the power assignment that minimizes the ratio of its power to the number of currently uncovered TDs it contains. In the event of a tie, we pick an arbitrary power assignment that achieves the minimum ratio. We continue choosing power assignments until all TDs are covered. Finally, various experiments verify that this method can outperform another greedy-based way.","PeriodicalId":196955,"journal":{"name":"Proceedings of the 6th International Conference on High Performance Compilation, Computing and Communications","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Local-Ratio-Based Power Control Approach for Capacitated Access Points in Mobile Edge Computing\",\"authors\":\"Qinghui Zhang, Weidong Li, Qian Su, Xuejie Zhang\",\"doi\":\"10.1145/3546000.3546027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Terminal devices (TDs) connect to networks through access points (APs) integrated into the edge server. This provides a prerequisite for TDs to upload tasks to cloud data centers or offload them to edge servers for execution. In this process, signal coverage, data transmission, and task execution consume energy, and the energy consumption of signal coverage increases sharply as the radius increases. Lower power leads to less energy consumption in a given time segment. Thus, power control for APs is essential for reducing energy consumption. Our objective is to determine the power assignment for each AP with same capacity constraints such that all TDs are covered, and the total power is minimized. We define this problem as a minimum power capacitated cover (MPCC) problem and present a minimum local ratio (MLR) power control approach for this problem to obtain accurate results in polynomial time. Power assignments are chosen in a sequence of rounds. In each round, we choose the power assignment that minimizes the ratio of its power to the number of currently uncovered TDs it contains. In the event of a tie, we pick an arbitrary power assignment that achieves the minimum ratio. We continue choosing power assignments until all TDs are covered. Finally, various experiments verify that this method can outperform another greedy-based way.\",\"PeriodicalId\":196955,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on High Performance Compilation, Computing and Communications\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on High Performance Compilation, Computing and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3546000.3546027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on High Performance Compilation, Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546000.3546027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Local-Ratio-Based Power Control Approach for Capacitated Access Points in Mobile Edge Computing
Terminal devices (TDs) connect to networks through access points (APs) integrated into the edge server. This provides a prerequisite for TDs to upload tasks to cloud data centers or offload them to edge servers for execution. In this process, signal coverage, data transmission, and task execution consume energy, and the energy consumption of signal coverage increases sharply as the radius increases. Lower power leads to less energy consumption in a given time segment. Thus, power control for APs is essential for reducing energy consumption. Our objective is to determine the power assignment for each AP with same capacity constraints such that all TDs are covered, and the total power is minimized. We define this problem as a minimum power capacitated cover (MPCC) problem and present a minimum local ratio (MLR) power control approach for this problem to obtain accurate results in polynomial time. Power assignments are chosen in a sequence of rounds. In each round, we choose the power assignment that minimizes the ratio of its power to the number of currently uncovered TDs it contains. In the event of a tie, we pick an arbitrary power assignment that achieves the minimum ratio. We continue choosing power assignments until all TDs are covered. Finally, various experiments verify that this method can outperform another greedy-based way.