麻麻-聚丙烯混纺机械冲孔非织造布在溢油清理中的应用

B. R, Viju S
{"title":"麻麻-聚丙烯混纺机械冲孔非织造布在溢油清理中的应用","authors":"B. R, Viju S","doi":"10.58414/scientifictemper.2023.14.2.13","DOIUrl":null,"url":null,"abstract":"In this study, impacts of nonwoven textile weight, proportion of nettle/polypropylene fibre blend and needle density on oil absorption, nonwoven textile thickness, and nonwoven textile density are examined. The experimental designs of box and behnken are employed to prepare the mechanical needle-punched nonwoven textiles. Nettle content, needle density and textile weight are boosted, oil absorption declines.  Nonwoven textile fabric offers the largest oil absorption (2200%) due to its 30% nettle content, a lesser amount of fabric weight and lower needle density.   The nonwoven fabric thickness reduces as the nettle content rises and the needle density rises. The nonwoven textile thickness reduces as the fabric weight and needle density rise, and as the nettle level increases. At increasing fabric weights, maximum fabric density is achieved. The highest fabric density is produced by higher nonwoven fabric weight (400 g/m2), nettle content (70%) and needle density (350 punches/cm2).","PeriodicalId":443629,"journal":{"name":"THE SCIENTIFIC TEMPER","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of nettle- polypropylene blended mechanical punched nonwoven textiles in oil spill cleanups\",\"authors\":\"B. R, Viju S\",\"doi\":\"10.58414/scientifictemper.2023.14.2.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, impacts of nonwoven textile weight, proportion of nettle/polypropylene fibre blend and needle density on oil absorption, nonwoven textile thickness, and nonwoven textile density are examined. The experimental designs of box and behnken are employed to prepare the mechanical needle-punched nonwoven textiles. Nettle content, needle density and textile weight are boosted, oil absorption declines.  Nonwoven textile fabric offers the largest oil absorption (2200%) due to its 30% nettle content, a lesser amount of fabric weight and lower needle density.   The nonwoven fabric thickness reduces as the nettle content rises and the needle density rises. The nonwoven textile thickness reduces as the fabric weight and needle density rise, and as the nettle level increases. At increasing fabric weights, maximum fabric density is achieved. The highest fabric density is produced by higher nonwoven fabric weight (400 g/m2), nettle content (70%) and needle density (350 punches/cm2).\",\"PeriodicalId\":443629,\"journal\":{\"name\":\"THE SCIENTIFIC TEMPER\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE SCIENTIFIC TEMPER\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58414/scientifictemper.2023.14.2.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE SCIENTIFIC TEMPER","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58414/scientifictemper.2023.14.2.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了非织造布重量、麻/聚丙烯纤维混纺比例和针尖密度对吸油率、非织造布厚度和非织造布密度的影响。采用箱形和槽形试验设计制备机械针刺非织造布。荨麻含量,针密度和纺织品重量增加,吸油率下降。无纺布具有最大的吸油量(2200%),因为其30%的荨麻含量,较少的织物重量和较低的针密度。随着麻含量的增加和针密度的增加,非织造布的厚度减小。非织造布厚度随着织物重量和针密度的增加和荨麻水平的增加而减小。随着织物重量的增加,织物密度达到最大。最高的织物密度是由较高的非织造布重量(400克/平方米)、荨麻含量(70%)和针密度(350孔/平方厘米)产生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of nettle- polypropylene blended mechanical punched nonwoven textiles in oil spill cleanups
In this study, impacts of nonwoven textile weight, proportion of nettle/polypropylene fibre blend and needle density on oil absorption, nonwoven textile thickness, and nonwoven textile density are examined. The experimental designs of box and behnken are employed to prepare the mechanical needle-punched nonwoven textiles. Nettle content, needle density and textile weight are boosted, oil absorption declines.  Nonwoven textile fabric offers the largest oil absorption (2200%) due to its 30% nettle content, a lesser amount of fabric weight and lower needle density.   The nonwoven fabric thickness reduces as the nettle content rises and the needle density rises. The nonwoven textile thickness reduces as the fabric weight and needle density rise, and as the nettle level increases. At increasing fabric weights, maximum fabric density is achieved. The highest fabric density is produced by higher nonwoven fabric weight (400 g/m2), nettle content (70%) and needle density (350 punches/cm2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurement of agricultural productivity and levels of development in the Malaprabha river basin, Karnataka, India Assessing the role of EDTA and SA in mustard under Cd and Pb stress Trichoderma atrobrunneum: In vitro analysis of exoenzyme activity and antagonistic potential against plant pathogen from agricultural fields in the Patna region, India Exploring the therapeutic implications of nanoparticles for liquid tumors: A comprehensive review with special emphasis on green synthesis techniques in the context of Dalton’s lymphoma Nanoparticles as illuminating allies: Advancing diagnostic frontiers in COVID-19- A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1