递归神经网络用于自然语言生成的实验比较

H. Nakagama, S. Tanaka
{"title":"递归神经网络用于自然语言生成的实验比较","authors":"H. Nakagama, S. Tanaka","doi":"10.1109/ICONIP.2002.1198155","DOIUrl":null,"url":null,"abstract":"We study the performance of three types of recurrent neural networks (RNN) for the production of natural language sentences: Simple Recurrent Networks (SRN), Back-Propagation Through Time (BPTT) and Sequential Recursive Auto-Associative Memory (SRAAM). We used simple and complex grammars to compare the ability of learning and being scaled up. Among them, SRAAM is found to have highest performance of training and producing fairly complex and long sentences.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An experimental comparison of recurrent neural network for natural language production\",\"authors\":\"H. Nakagama, S. Tanaka\",\"doi\":\"10.1109/ICONIP.2002.1198155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the performance of three types of recurrent neural networks (RNN) for the production of natural language sentences: Simple Recurrent Networks (SRN), Back-Propagation Through Time (BPTT) and Sequential Recursive Auto-Associative Memory (SRAAM). We used simple and complex grammars to compare the ability of learning and being scaled up. Among them, SRAAM is found to have highest performance of training and producing fairly complex and long sentences.\",\"PeriodicalId\":146553,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.2002.1198155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1198155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了三种类型的递归神经网络(RNN)在自然语言句子生成中的性能:简单递归网络(SRN)、时间反向传播(BPTT)和顺序递归自关联记忆(SRAAM)。我们用简单和复杂的语法来比较学习和扩展的能力。其中,SRAAM在训练和生成相当复杂和较长的句子方面表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An experimental comparison of recurrent neural network for natural language production
We study the performance of three types of recurrent neural networks (RNN) for the production of natural language sentences: Simple Recurrent Networks (SRN), Back-Propagation Through Time (BPTT) and Sequential Recursive Auto-Associative Memory (SRAAM). We used simple and complex grammars to compare the ability of learning and being scaled up. Among them, SRAAM is found to have highest performance of training and producing fairly complex and long sentences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware neuron models with CMOS for auditory neural networks Extracting latent structures in numerical classification: an investigation using two factor models An application of a progressive neural network technique in the identification of suspension properties of tracked vehicles Discussions of neural network solvers for inverse optimization problems Link between energy and computation in a physical model of Hopfield network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1