处理和通知范围Top-k订阅

Albert Yu, P. Agarwal, Jun Yang
{"title":"处理和通知范围Top-k订阅","authors":"Albert Yu, P. Agarwal, Jun Yang","doi":"10.1109/ICDE.2012.67","DOIUrl":null,"url":null,"abstract":"We consider how to support a large number of users over a wide-area network whose interests are characterised by range top-k continuous queries. Given an object update, we need to notify users whose top-k results are affected. Simple solutions include using a content-driven network to notify all users whose interest ranges contain the update (ignoring top-k), or using a server to compute only the affected queries and notifying them individually. The former solution generates too much network traffic, while the latter overwhelms the server. We present a geometric framework for the problem that allows us to describe the set of affected queries succinctly with messages that can be efficiently disseminated using content-driven networks. We give fast algorithms to reformulate each update into a set of messages whose number is provably optimal, with or without knowing all user interests. We also present extensions to our solution, including an approximate algorithm that trades off between the cost of server-side reformulation and that of user-side post-processing, as well as efficient techniques for batch updates.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"453 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Processing and Notifying Range Top-k Subscriptions\",\"authors\":\"Albert Yu, P. Agarwal, Jun Yang\",\"doi\":\"10.1109/ICDE.2012.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider how to support a large number of users over a wide-area network whose interests are characterised by range top-k continuous queries. Given an object update, we need to notify users whose top-k results are affected. Simple solutions include using a content-driven network to notify all users whose interest ranges contain the update (ignoring top-k), or using a server to compute only the affected queries and notifying them individually. The former solution generates too much network traffic, while the latter overwhelms the server. We present a geometric framework for the problem that allows us to describe the set of affected queries succinctly with messages that can be efficiently disseminated using content-driven networks. We give fast algorithms to reformulate each update into a set of messages whose number is provably optimal, with or without knowing all user interests. We also present extensions to our solution, including an approximate algorithm that trades off between the cost of server-side reformulation and that of user-side post-processing, as well as efficient techniques for batch updates.\",\"PeriodicalId\":321608,\"journal\":{\"name\":\"2012 IEEE 28th International Conference on Data Engineering\",\"volume\":\"453 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 28th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2012.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑如何在广域网上支持大量用户,这些用户的兴趣以范围top-k连续查询为特征。给定对象更新,我们需要通知top-k结果受到影响的用户。简单的解决方案包括使用内容驱动的网络通知其兴趣范围包含更新的所有用户(忽略top-k),或者使用服务器仅计算受影响的查询并单独通知它们。前一种解决方案产生过多的网络流量,而后一种解决方案使服务器不堪重负。我们为这个问题提出了一个几何框架,它允许我们用消息简洁地描述受影响的查询集,这些消息可以使用内容驱动的网络有效地传播。我们给出了快速算法,将每个更新重新表述为一组消息,这些消息的数量可以证明是最优的,无论是否知道所有用户的兴趣。我们还对我们的解决方案进行了扩展,包括一种近似算法,可以在服务器端重新制定的成本和用户端后处理的成本之间进行权衡,以及批处理更新的有效技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Processing and Notifying Range Top-k Subscriptions
We consider how to support a large number of users over a wide-area network whose interests are characterised by range top-k continuous queries. Given an object update, we need to notify users whose top-k results are affected. Simple solutions include using a content-driven network to notify all users whose interest ranges contain the update (ignoring top-k), or using a server to compute only the affected queries and notifying them individually. The former solution generates too much network traffic, while the latter overwhelms the server. We present a geometric framework for the problem that allows us to describe the set of affected queries succinctly with messages that can be efficiently disseminated using content-driven networks. We give fast algorithms to reformulate each update into a set of messages whose number is provably optimal, with or without knowing all user interests. We also present extensions to our solution, including an approximate algorithm that trades off between the cost of server-side reformulation and that of user-side post-processing, as well as efficient techniques for batch updates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keyword Query Reformulation on Structured Data Accuracy-Aware Uncertain Stream Databases Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks Project Daytona: Data Analytics as a Cloud Service Automatic Extraction of Structured Web Data with Domain Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1