基于语义分割的水体检测

Mina Talal, A. Panthakkan, Husameldin Mukhtar, W. Mansoor, S. Almansoori, Hussain Al-Ahmad
{"title":"基于语义分割的水体检测","authors":"Mina Talal, A. Panthakkan, Husameldin Mukhtar, W. Mansoor, S. Almansoori, Hussain Al-Ahmad","doi":"10.1109/CSPIS.2018.8642743","DOIUrl":null,"url":null,"abstract":"This paper proposes a semantic segmentation technique to automatically detect water-bodies from DubaiSat-2 images. The proposed method uses a deep convolutional neural network transfer-learning model. Several evaluation metrics such as accuracy, precision, and Jaccard coefficient are used to test our proposed algorithm. The overall accuracy for the prediction of water-bodies in DubaiSat-2 image dataset is 99.86%.","PeriodicalId":251356,"journal":{"name":"2018 International Conference on Signal Processing and Information Security (ICSPIS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Detection of Water-Bodies Using Semantic Segmentation\",\"authors\":\"Mina Talal, A. Panthakkan, Husameldin Mukhtar, W. Mansoor, S. Almansoori, Hussain Al-Ahmad\",\"doi\":\"10.1109/CSPIS.2018.8642743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a semantic segmentation technique to automatically detect water-bodies from DubaiSat-2 images. The proposed method uses a deep convolutional neural network transfer-learning model. Several evaluation metrics such as accuracy, precision, and Jaccard coefficient are used to test our proposed algorithm. The overall accuracy for the prediction of water-bodies in DubaiSat-2 image dataset is 99.86%.\",\"PeriodicalId\":251356,\"journal\":{\"name\":\"2018 International Conference on Signal Processing and Information Security (ICSPIS)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Signal Processing and Information Security (ICSPIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSPIS.2018.8642743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Signal Processing and Information Security (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPIS.2018.8642743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种语义分割技术,用于DubaiSat-2图像中水体的自动检测。该方法采用深度卷积神经网络迁移学习模型。几个评估指标,如准确性,精密度和Jaccard系数被用来测试我们提出的算法。DubaiSat-2图像数据集水体预测总体精度为99.86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Water-Bodies Using Semantic Segmentation
This paper proposes a semantic segmentation technique to automatically detect water-bodies from DubaiSat-2 images. The proposed method uses a deep convolutional neural network transfer-learning model. Several evaluation metrics such as accuracy, precision, and Jaccard coefficient are used to test our proposed algorithm. The overall accuracy for the prediction of water-bodies in DubaiSat-2 image dataset is 99.86%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing a performant security control for Industrial Ethernet Hindrances in the Fitness Landscape and Remedies to Achieve Optimization Low Complexity Receivers for Massive MIMO Cloud Radio Access Systems Using Virtual Agent for Facilitating Online Questionnaire Surveys Autonomous Building Detection Using Region Properties and PCA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1