Gregory P. Johnson, S. Mock, Brandt M. Westing, Gregory S. Johnson
{"title":"EnVision:一个基于网络的科学可视化工具","authors":"Gregory P. Johnson, S. Mock, Brandt M. Westing, Gregory S. Johnson","doi":"10.1109/CCGRID.2009.80","DOIUrl":null,"url":null,"abstract":"Scientific visualization is the process of transforming raw numeric data into a visual form, and is a key element of computational science. While many tools exist, they are unnecessarily difficult to use. This complexity increases time to insight and inhibits casual inquiry. The complexity derives from the need to support arbitrarily formatted data and many visualization algorithms. EnVision addresses both sources of complexity. Its design is predicated on two key insights. First, though the number of data file formats is unbounded, the structure of any one can be described using a small number of parameters. Second, the set of visualization algorithms applicable to a given type of data is small, and the subset used within a specific scientific discipline is smaller. EnVision utilizes domain-specific knowledge and user-directed semi-automation to dramatically simplify data importation and visualization algorithm selection. Its web-based interface facilitates access to remote hardware resources and provides a collaborative visualization environment.","PeriodicalId":118263,"journal":{"name":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","volume":"62 3-4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"EnVision: A Web-Based Tool for Scientific Visualization\",\"authors\":\"Gregory P. Johnson, S. Mock, Brandt M. Westing, Gregory S. Johnson\",\"doi\":\"10.1109/CCGRID.2009.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific visualization is the process of transforming raw numeric data into a visual form, and is a key element of computational science. While many tools exist, they are unnecessarily difficult to use. This complexity increases time to insight and inhibits casual inquiry. The complexity derives from the need to support arbitrarily formatted data and many visualization algorithms. EnVision addresses both sources of complexity. Its design is predicated on two key insights. First, though the number of data file formats is unbounded, the structure of any one can be described using a small number of parameters. Second, the set of visualization algorithms applicable to a given type of data is small, and the subset used within a specific scientific discipline is smaller. EnVision utilizes domain-specific knowledge and user-directed semi-automation to dramatically simplify data importation and visualization algorithm selection. Its web-based interface facilitates access to remote hardware resources and provides a collaborative visualization environment.\",\"PeriodicalId\":118263,\"journal\":{\"name\":\"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid\",\"volume\":\"62 3-4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2009.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2009.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EnVision: A Web-Based Tool for Scientific Visualization
Scientific visualization is the process of transforming raw numeric data into a visual form, and is a key element of computational science. While many tools exist, they are unnecessarily difficult to use. This complexity increases time to insight and inhibits casual inquiry. The complexity derives from the need to support arbitrarily formatted data and many visualization algorithms. EnVision addresses both sources of complexity. Its design is predicated on two key insights. First, though the number of data file formats is unbounded, the structure of any one can be described using a small number of parameters. Second, the set of visualization algorithms applicable to a given type of data is small, and the subset used within a specific scientific discipline is smaller. EnVision utilizes domain-specific knowledge and user-directed semi-automation to dramatically simplify data importation and visualization algorithm selection. Its web-based interface facilitates access to remote hardware resources and provides a collaborative visualization environment.