单垂直纳米线电容器的C-V测量

P. Mensch, K. Moselund, S. Karg, E. Lortscher, M. Bjork, H. Schmid, H. Riel
{"title":"单垂直纳米线电容器的C-V测量","authors":"P. Mensch, K. Moselund, S. Karg, E. Lortscher, M. Bjork, H. Schmid, H. Riel","doi":"10.1109/DRC.2011.5994444","DOIUrl":null,"url":null,"abstract":"The density of interface states, Dit, is important for the device performance in view of the fact that it limits the inverse subthreshold slope in both, MOSFETs and TFETs [1]. This poses particular challenges for nanowire (NW) devices, because the measured Dit is expected to increase due to the extensive processing and the various crystallographic orientations of the surface, which differ from the ideal (100) orientation. For a detailed investigation of the Dit of NWs it is best to analyze single NW MOS capacitors. However, the capacitance of a single NW MOS capacitor lies in the fF regime which is very challenging to measure. To date, very few capacitance measurements on single NWs have been reported, e.g., on lateral devices based on InAs [2], Ge [3], and Si [4]. Dit analysis of NWs has been demonstrated, however, based on capacitance measurements only of large arrays of InAs NWs [5]. In the present work, we report on the capacitance measurement and Dit analysis of vertical silicon MOS capacitors based on single NWs.","PeriodicalId":107059,"journal":{"name":"69th Device Research Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"C-V measurements of single vertical nanowire capacitors\",\"authors\":\"P. Mensch, K. Moselund, S. Karg, E. Lortscher, M. Bjork, H. Schmid, H. Riel\",\"doi\":\"10.1109/DRC.2011.5994444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The density of interface states, Dit, is important for the device performance in view of the fact that it limits the inverse subthreshold slope in both, MOSFETs and TFETs [1]. This poses particular challenges for nanowire (NW) devices, because the measured Dit is expected to increase due to the extensive processing and the various crystallographic orientations of the surface, which differ from the ideal (100) orientation. For a detailed investigation of the Dit of NWs it is best to analyze single NW MOS capacitors. However, the capacitance of a single NW MOS capacitor lies in the fF regime which is very challenging to measure. To date, very few capacitance measurements on single NWs have been reported, e.g., on lateral devices based on InAs [2], Ge [3], and Si [4]. Dit analysis of NWs has been demonstrated, however, based on capacitance measurements only of large arrays of InAs NWs [5]. In the present work, we report on the capacitance measurement and Dit analysis of vertical silicon MOS capacitors based on single NWs.\",\"PeriodicalId\":107059,\"journal\":{\"name\":\"69th Device Research Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"69th Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2011.5994444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"69th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2011.5994444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

界面态密度Dit对器件性能很重要,因为它限制了mosfet和tfet的逆亚阈值斜率[1]。这对纳米线(NW)器件提出了特别的挑战,因为由于广泛的加工和表面的各种晶体取向(与理想(100)取向不同),测量的Dit预计会增加。为了详细研究NW的Dit,最好分析单个NW MOS电容器。然而,单个NW MOS电容器的电容处于fF区,这是非常具有挑战性的测量。迄今为止,对单个NWs进行电容测量的报道很少,例如,基于InAs[2]、Ge[3]和Si[4]的横向器件。然而,已经证明了NWs的Dit分析,仅基于大型InAs NWs阵列的电容测量[5]。在本工作中,我们报道了基于单个NWs的垂直硅MOS电容器的电容测量和Dit分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
C-V measurements of single vertical nanowire capacitors
The density of interface states, Dit, is important for the device performance in view of the fact that it limits the inverse subthreshold slope in both, MOSFETs and TFETs [1]. This poses particular challenges for nanowire (NW) devices, because the measured Dit is expected to increase due to the extensive processing and the various crystallographic orientations of the surface, which differ from the ideal (100) orientation. For a detailed investigation of the Dit of NWs it is best to analyze single NW MOS capacitors. However, the capacitance of a single NW MOS capacitor lies in the fF regime which is very challenging to measure. To date, very few capacitance measurements on single NWs have been reported, e.g., on lateral devices based on InAs [2], Ge [3], and Si [4]. Dit analysis of NWs has been demonstrated, however, based on capacitance measurements only of large arrays of InAs NWs [5]. In the present work, we report on the capacitance measurement and Dit analysis of vertical silicon MOS capacitors based on single NWs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical program committee Rump sessions Circuit applications based on solution-processed zinc-tin oxide TFTs 1.0 THz fmax InP DHBTs in a refractory emitter and self-aligned base process for reduced base access resistance Effect of disorder on superfluidity in double layer graphene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1