{"title":"一种新的基于过去的可变遗忘因子和正则化自适应ESPIRT算法","authors":"Jianqiang Lin, S. Chan","doi":"10.1109/ICDSP.2018.8631851","DOIUrl":null,"url":null,"abstract":"The estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm is a widely used subspace-based method for direction-of-arrival (DOA) estimation in array signal processing and spectral analysis. It requires the estimation of the signal subspaces of rotational invariance sub-arrays of a sensor array, from which the DOAs can be estimated by solving an eigenvalue problem. This paper proposes a projection approximation subspace tracking (PAST)-based adaptive ESPRIT algorithm with variable forgetting factor (VFF) and variable regularization (VR). The VFF and VR PAST algorithm is based on a recently proposed Locally Optimal FF (LOFF) scheme with improved convergence speed and steady state error performance. Moreover, variable regularization is incorporated to reduce the estimation variance during ill-conditioning or low input signal level. The proposed LOFF-VR adaptive ESPRIT method is also utilized for tracking the eigenvalues and hence the DOAs. Experimental simulations show that the proposed LOFF-VR-ESPRIT algorithm outperforms the conventional approaches in stationary and nonstationary environments, especially in the presence of signal fading.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A New PAST-Based Adaptive ESPIRT Algorithm with Variable Forgetting Factor and Regularization\",\"authors\":\"Jianqiang Lin, S. Chan\",\"doi\":\"10.1109/ICDSP.2018.8631851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm is a widely used subspace-based method for direction-of-arrival (DOA) estimation in array signal processing and spectral analysis. It requires the estimation of the signal subspaces of rotational invariance sub-arrays of a sensor array, from which the DOAs can be estimated by solving an eigenvalue problem. This paper proposes a projection approximation subspace tracking (PAST)-based adaptive ESPRIT algorithm with variable forgetting factor (VFF) and variable regularization (VR). The VFF and VR PAST algorithm is based on a recently proposed Locally Optimal FF (LOFF) scheme with improved convergence speed and steady state error performance. Moreover, variable regularization is incorporated to reduce the estimation variance during ill-conditioning or low input signal level. The proposed LOFF-VR adaptive ESPRIT method is also utilized for tracking the eigenvalues and hence the DOAs. Experimental simulations show that the proposed LOFF-VR-ESPRIT algorithm outperforms the conventional approaches in stationary and nonstationary environments, especially in the presence of signal fading.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New PAST-Based Adaptive ESPIRT Algorithm with Variable Forgetting Factor and Regularization
The estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm is a widely used subspace-based method for direction-of-arrival (DOA) estimation in array signal processing and spectral analysis. It requires the estimation of the signal subspaces of rotational invariance sub-arrays of a sensor array, from which the DOAs can be estimated by solving an eigenvalue problem. This paper proposes a projection approximation subspace tracking (PAST)-based adaptive ESPRIT algorithm with variable forgetting factor (VFF) and variable regularization (VR). The VFF and VR PAST algorithm is based on a recently proposed Locally Optimal FF (LOFF) scheme with improved convergence speed and steady state error performance. Moreover, variable regularization is incorporated to reduce the estimation variance during ill-conditioning or low input signal level. The proposed LOFF-VR adaptive ESPRIT method is also utilized for tracking the eigenvalues and hence the DOAs. Experimental simulations show that the proposed LOFF-VR-ESPRIT algorithm outperforms the conventional approaches in stationary and nonstationary environments, especially in the presence of signal fading.