{"title":"AIP:利用近似内积节省cnn的DRAM存取能量","authors":"C. Cheng, Ren-Shuo Liu","doi":"10.1109/AICAS.2019.8771595","DOIUrl":null,"url":null,"abstract":"In this work, we propose AIP (Approximate Inner Product), which approximates the inner products of CNNs’ fully-connected (FC) layers by using only a small fraction (e.g., one-sixteenth) of parameters. We observe that FC layers possess several characteristics that naturally fit AIP: the dropout training strategy, rectified linear units (ReLUs), and top-n operator. Experimental results show that 48% of DRAM access energy can be reduced at the cost of only 2% of top-5 accuracy loss (for VGG-f).","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AIP: Saving the DRAM Access Energy of CNNs Using Approximate Inner Products\",\"authors\":\"C. Cheng, Ren-Shuo Liu\",\"doi\":\"10.1109/AICAS.2019.8771595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose AIP (Approximate Inner Product), which approximates the inner products of CNNs’ fully-connected (FC) layers by using only a small fraction (e.g., one-sixteenth) of parameters. We observe that FC layers possess several characteristics that naturally fit AIP: the dropout training strategy, rectified linear units (ReLUs), and top-n operator. Experimental results show that 48% of DRAM access energy can be reduced at the cost of only 2% of top-5 accuracy loss (for VGG-f).\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AIP: Saving the DRAM Access Energy of CNNs Using Approximate Inner Products
In this work, we propose AIP (Approximate Inner Product), which approximates the inner products of CNNs’ fully-connected (FC) layers by using only a small fraction (e.g., one-sixteenth) of parameters. We observe that FC layers possess several characteristics that naturally fit AIP: the dropout training strategy, rectified linear units (ReLUs), and top-n operator. Experimental results show that 48% of DRAM access energy can be reduced at the cost of only 2% of top-5 accuracy loss (for VGG-f).