AIP:利用近似内积节省cnn的DRAM存取能量

C. Cheng, Ren-Shuo Liu
{"title":"AIP:利用近似内积节省cnn的DRAM存取能量","authors":"C. Cheng, Ren-Shuo Liu","doi":"10.1109/AICAS.2019.8771595","DOIUrl":null,"url":null,"abstract":"In this work, we propose AIP (Approximate Inner Product), which approximates the inner products of CNNs’ fully-connected (FC) layers by using only a small fraction (e.g., one-sixteenth) of parameters. We observe that FC layers possess several characteristics that naturally fit AIP: the dropout training strategy, rectified linear units (ReLUs), and top-n operator. Experimental results show that 48% of DRAM access energy can be reduced at the cost of only 2% of top-5 accuracy loss (for VGG-f).","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AIP: Saving the DRAM Access Energy of CNNs Using Approximate Inner Products\",\"authors\":\"C. Cheng, Ren-Shuo Liu\",\"doi\":\"10.1109/AICAS.2019.8771595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose AIP (Approximate Inner Product), which approximates the inner products of CNNs’ fully-connected (FC) layers by using only a small fraction (e.g., one-sixteenth) of parameters. We observe that FC layers possess several characteristics that naturally fit AIP: the dropout training strategy, rectified linear units (ReLUs), and top-n operator. Experimental results show that 48% of DRAM access energy can be reduced at the cost of only 2% of top-5 accuracy loss (for VGG-f).\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了AIP(近似内积),它通过仅使用一小部分(例如,十六分之一)参数来近似cnn的全连接(FC)层的内积。我们观察到FC层具有几个自然适合AIP的特征:dropout训练策略,整流线性单元(relu)和top-n算子。实验结果表明,仅以前5位精度损失的2%(对于VGG-f)为代价,可以减少48%的DRAM存取能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AIP: Saving the DRAM Access Energy of CNNs Using Approximate Inner Products
In this work, we propose AIP (Approximate Inner Product), which approximates the inner products of CNNs’ fully-connected (FC) layers by using only a small fraction (e.g., one-sixteenth) of parameters. We observe that FC layers possess several characteristics that naturally fit AIP: the dropout training strategy, rectified linear units (ReLUs), and top-n operator. Experimental results show that 48% of DRAM access energy can be reduced at the cost of only 2% of top-5 accuracy loss (for VGG-f).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Intelligence of Things Wearable System for Cardiac Disease Detection Fast event-driven incremental learning of hand symbols Accelerating CNN-RNN Based Machine Health Monitoring on FPGA Neuromorphic networks on the SpiNNaker platform Complexity Reduction on HEVC Intra Mode Decision with modified LeNet-5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1