{"title":"片上网络中交换总线的故障模型标记和错误控制方案","authors":"H. Zimmer, A. Jantsch","doi":"10.1145/944645.944694","DOIUrl":null,"url":null,"abstract":"The reliability of a network-on-chip will be significantly influenced by the reliability of the switch-to-switch connections. Faults on these buses may cause disturbances on multiple adjacent wires, so that errors on these wires can no longer be considered as statistically independent from one another, as it is expected due to deep submicron effects. A new fault model notation for buses is proposed which can represent multiple-wire, multiple-cycle faults. An estimation method based on this notation is presented which can accurately predict error probabilities. This method is used to examine bus encoding schemes. Finally, an encoding scheme for four quality-of-service classes is proposed which can be dynamically selected for each packet.","PeriodicalId":174422,"journal":{"name":"First IEEE/ACM/IFIP International Conference on Hardware/ Software Codesign and Systems Synthesis (IEEE Cat. No.03TH8721)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"145","resultStr":"{\"title\":\"A fault model notation and error-control scheme for switch-to-switch buses in a network-on-chip\",\"authors\":\"H. Zimmer, A. Jantsch\",\"doi\":\"10.1145/944645.944694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reliability of a network-on-chip will be significantly influenced by the reliability of the switch-to-switch connections. Faults on these buses may cause disturbances on multiple adjacent wires, so that errors on these wires can no longer be considered as statistically independent from one another, as it is expected due to deep submicron effects. A new fault model notation for buses is proposed which can represent multiple-wire, multiple-cycle faults. An estimation method based on this notation is presented which can accurately predict error probabilities. This method is used to examine bus encoding schemes. Finally, an encoding scheme for four quality-of-service classes is proposed which can be dynamically selected for each packet.\",\"PeriodicalId\":174422,\"journal\":{\"name\":\"First IEEE/ACM/IFIP International Conference on Hardware/ Software Codesign and Systems Synthesis (IEEE Cat. No.03TH8721)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"145\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First IEEE/ACM/IFIP International Conference on Hardware/ Software Codesign and Systems Synthesis (IEEE Cat. No.03TH8721)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/944645.944694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First IEEE/ACM/IFIP International Conference on Hardware/ Software Codesign and Systems Synthesis (IEEE Cat. No.03TH8721)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/944645.944694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fault model notation and error-control scheme for switch-to-switch buses in a network-on-chip
The reliability of a network-on-chip will be significantly influenced by the reliability of the switch-to-switch connections. Faults on these buses may cause disturbances on multiple adjacent wires, so that errors on these wires can no longer be considered as statistically independent from one another, as it is expected due to deep submicron effects. A new fault model notation for buses is proposed which can represent multiple-wire, multiple-cycle faults. An estimation method based on this notation is presented which can accurately predict error probabilities. This method is used to examine bus encoding schemes. Finally, an encoding scheme for four quality-of-service classes is proposed which can be dynamically selected for each packet.