紧凑塑料球栅阵列封装空气冷却模型的传热数值分析

G. Peng, M. Ishizuka
{"title":"紧凑塑料球栅阵列封装空气冷却模型的传热数值分析","authors":"G. Peng, M. Ishizuka","doi":"10.1109/ITHERM.2002.1012435","DOIUrl":null,"url":null,"abstract":"The thermal performance of a temple package air cooling model composed of a 672-pin plastic ball grid array (PBGA) package mounted on a printed circuit board (PCB) and a compact system box has been investigated by numerical simulations of heat transfer. A geometry model resembling the PBGA/PCB package with directional homogeneous solid blocks was constructed, and a three-dimensional computational approach of thermal flow simulation was developed considering conduction and convection modes of heat transfer. Having been verified by experimental results, the approach was applied to the analysis of heat transfer in the package air cooling system. Computational results show that the thermal resistance of PGBA/PCB package model under the condition of natural air cooling is about 27.0 K/W and closes to 25.0 K/W gradually with the increase of heat spreading. Under the condition of forced air cooling, its thermal resistance decreases with the increase of airflow velocity, and the reasonable velocity of air cooling is revealed to be about 0.8 m/s.","PeriodicalId":299933,"journal":{"name":"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Numerical analysis of heat transfer in a compact plastic ball grid array package air cooling model\",\"authors\":\"G. Peng, M. Ishizuka\",\"doi\":\"10.1109/ITHERM.2002.1012435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The thermal performance of a temple package air cooling model composed of a 672-pin plastic ball grid array (PBGA) package mounted on a printed circuit board (PCB) and a compact system box has been investigated by numerical simulations of heat transfer. A geometry model resembling the PBGA/PCB package with directional homogeneous solid blocks was constructed, and a three-dimensional computational approach of thermal flow simulation was developed considering conduction and convection modes of heat transfer. Having been verified by experimental results, the approach was applied to the analysis of heat transfer in the package air cooling system. Computational results show that the thermal resistance of PGBA/PCB package model under the condition of natural air cooling is about 27.0 K/W and closes to 25.0 K/W gradually with the increase of heat spreading. Under the condition of forced air cooling, its thermal resistance decreases with the increase of airflow velocity, and the reasonable velocity of air cooling is revealed to be about 0.8 m/s.\",\"PeriodicalId\":299933,\"journal\":{\"name\":\"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2002.1012435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2002.1012435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

采用数值模拟的方法,研究了由安装在印刷电路板上的672针塑料球栅阵列(PBGA)封装和紧凑系统盒组成的神庙封装风冷模型的传热性能。构建了具有定向均匀实体块的PBGA/PCB封装几何模型,建立了考虑传导和对流传热方式的三维热流模拟计算方法。实验结果验证了该方法的有效性,并将其应用于包式风冷系统的传热分析。计算结果表明,自然风冷条件下PGBA/PCB封装模型的热阻约为27.0 K/W,随着散热的增大,热阻逐渐接近25.0 K/W。在强制风冷条件下,其热阻随气流速度的增大而减小,合理的风冷速度为0.8 m/s左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical analysis of heat transfer in a compact plastic ball grid array package air cooling model
The thermal performance of a temple package air cooling model composed of a 672-pin plastic ball grid array (PBGA) package mounted on a printed circuit board (PCB) and a compact system box has been investigated by numerical simulations of heat transfer. A geometry model resembling the PBGA/PCB package with directional homogeneous solid blocks was constructed, and a three-dimensional computational approach of thermal flow simulation was developed considering conduction and convection modes of heat transfer. Having been verified by experimental results, the approach was applied to the analysis of heat transfer in the package air cooling system. Computational results show that the thermal resistance of PGBA/PCB package model under the condition of natural air cooling is about 27.0 K/W and closes to 25.0 K/W gradually with the increase of heat spreading. Under the condition of forced air cooling, its thermal resistance decreases with the increase of airflow velocity, and the reasonable velocity of air cooling is revealed to be about 0.8 m/s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of lumped R/sub th/C/sub th/ and approximate steady-state methods for reducing transient analysis solution time Multistage thermoelectric micro coolers A new approach to the design of complex heat transfer systems: notebook-size computer design Multimedia thermal CAD system for electronics multilayer structures with compact cold plate Modeling superconformal electrodeposition in trenches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1