细粒度地名文本的地理编码:地理解析徒步描述语料库的实验

Ludovic Moncla, Walter Renteria-Agualimpia, J. Nogueras-Iso, M. Gaio
{"title":"细粒度地名文本的地理编码:地理解析徒步描述语料库的实验","authors":"Ludovic Moncla, Walter Renteria-Agualimpia, J. Nogueras-Iso, M. Gaio","doi":"10.1145/2666310.2666386","DOIUrl":null,"url":null,"abstract":"Geoparsing and geocoding are two essential middleware services to facilitate final user applications such as location-aware searching or different types of location-based services. The objective of this work is to propose a method for establishing a processing chain to support the geoparsing and geocoding of text documents describing events strongly linked with space and with a frequent use of fine-grain toponyms. The geoparsing part is a Natural Language Processing approach which combines the use of part of speech and syntactico-semantic combined patterns (cascade of transducers). However, the real novelty of this work lies in the geocoding method. The geocoding algorithm is unsupervised and takes profit of clustering techniques to provide a solution for disambiguating the toponyms found in gazetteers, and at the same time estimating the spatial footprint of those other fine-grain toponyms not found in gazetteers. The feasibility of the proposal has been tested with a corpus of hiking descriptions in French, Spanish and Italian.","PeriodicalId":153031,"journal":{"name":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Geocoding for texts with fine-grain toponyms: an experiment on a geoparsed hiking descriptions corpus\",\"authors\":\"Ludovic Moncla, Walter Renteria-Agualimpia, J. Nogueras-Iso, M. Gaio\",\"doi\":\"10.1145/2666310.2666386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geoparsing and geocoding are two essential middleware services to facilitate final user applications such as location-aware searching or different types of location-based services. The objective of this work is to propose a method for establishing a processing chain to support the geoparsing and geocoding of text documents describing events strongly linked with space and with a frequent use of fine-grain toponyms. The geoparsing part is a Natural Language Processing approach which combines the use of part of speech and syntactico-semantic combined patterns (cascade of transducers). However, the real novelty of this work lies in the geocoding method. The geocoding algorithm is unsupervised and takes profit of clustering techniques to provide a solution for disambiguating the toponyms found in gazetteers, and at the same time estimating the spatial footprint of those other fine-grain toponyms not found in gazetteers. The feasibility of the proposal has been tested with a corpus of hiking descriptions in French, Spanish and Italian.\",\"PeriodicalId\":153031,\"journal\":{\"name\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2666310.2666386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666310.2666386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

地理解析和地理编码是促进最终用户应用程序(如位置感知搜索或不同类型的基于位置的服务)的两个基本中间件服务。这项工作的目的是提出一种方法来建立一个处理链,以支持地理解析和地理编码的文本文档,这些文本文档描述的事件与空间密切相关,并且经常使用细粒度的地名。地质解析部分是一种自然语言处理方法,它结合了词性和句法语义组合模式(换能器级联)的使用。然而,这项工作的真正新颖之处在于地理编码方法。地理编码算法是一种无监督的算法,它利用聚类技术来消除地名词典中发现的地名的歧义,同时估计地名词典中没有发现的其他细粒度地名的空间足迹。这项建议的可行性已经通过法语、西班牙语和意大利语的徒步旅行描述语料库进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geocoding for texts with fine-grain toponyms: an experiment on a geoparsed hiking descriptions corpus
Geoparsing and geocoding are two essential middleware services to facilitate final user applications such as location-aware searching or different types of location-based services. The objective of this work is to propose a method for establishing a processing chain to support the geoparsing and geocoding of text documents describing events strongly linked with space and with a frequent use of fine-grain toponyms. The geoparsing part is a Natural Language Processing approach which combines the use of part of speech and syntactico-semantic combined patterns (cascade of transducers). However, the real novelty of this work lies in the geocoding method. The geocoding algorithm is unsupervised and takes profit of clustering techniques to provide a solution for disambiguating the toponyms found in gazetteers, and at the same time estimating the spatial footprint of those other fine-grain toponyms not found in gazetteers. The feasibility of the proposal has been tested with a corpus of hiking descriptions in French, Spanish and Italian.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A parallel query engine for interactive spatiotemporal analysis Spatio-temporal trajectory simplification for inferring travel paths Parameterized spatial query processing based on social probabilistic clustering Accurate and efficient map matching for challenging environments Top-k point of interest retrieval using standard indexes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1