{"title":"一种用于立方体卫星的低轮廓高效等通量天线","authors":"Sipei Cai, S. Liao, W. Che, Q. Xue","doi":"10.1109/IWS55252.2022.9977839","DOIUrl":null,"url":null,"abstract":"This paper presents a low-profile, high-efficiency isoflux beam circularly polarized antenna for CubeSat applications. It mainly consists of two parts, namely the high-efficiency feeding network and low profile circularly polarized radiator. The feeding network is based on a sequentially fed radial planar waveguide to reduce feeding length and thus improve efficiency. Several sets of concentric annular slots are cut on the radial planar waveguide, and corner-cut patches are placed on the slots, which realizes the radiator generating rotational symmetrical isoflux CP radiation. The proposed isoflux antenna features both low-profile and high radiation efficiency. A prototype operating at 8.4GHz is designed to prove the idea.","PeriodicalId":126964,"journal":{"name":"2022 IEEE MTT-S International Wireless Symposium (IWS)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Low-profile High-efficiency Isoflux Antenna for CubeSat Applications\",\"authors\":\"Sipei Cai, S. Liao, W. Che, Q. Xue\",\"doi\":\"10.1109/IWS55252.2022.9977839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a low-profile, high-efficiency isoflux beam circularly polarized antenna for CubeSat applications. It mainly consists of two parts, namely the high-efficiency feeding network and low profile circularly polarized radiator. The feeding network is based on a sequentially fed radial planar waveguide to reduce feeding length and thus improve efficiency. Several sets of concentric annular slots are cut on the radial planar waveguide, and corner-cut patches are placed on the slots, which realizes the radiator generating rotational symmetrical isoflux CP radiation. The proposed isoflux antenna features both low-profile and high radiation efficiency. A prototype operating at 8.4GHz is designed to prove the idea.\",\"PeriodicalId\":126964,\"journal\":{\"name\":\"2022 IEEE MTT-S International Wireless Symposium (IWS)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE MTT-S International Wireless Symposium (IWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWS55252.2022.9977839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE MTT-S International Wireless Symposium (IWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWS55252.2022.9977839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Low-profile High-efficiency Isoflux Antenna for CubeSat Applications
This paper presents a low-profile, high-efficiency isoflux beam circularly polarized antenna for CubeSat applications. It mainly consists of two parts, namely the high-efficiency feeding network and low profile circularly polarized radiator. The feeding network is based on a sequentially fed radial planar waveguide to reduce feeding length and thus improve efficiency. Several sets of concentric annular slots are cut on the radial planar waveguide, and corner-cut patches are placed on the slots, which realizes the radiator generating rotational symmetrical isoflux CP radiation. The proposed isoflux antenna features both low-profile and high radiation efficiency. A prototype operating at 8.4GHz is designed to prove the idea.