调制高频振荡可以利用隐马尔可夫模型识别人类脑电图感兴趣的区域

Mirna Guirgis, Y. Chinvarun, M. D. Campo, P. Carlen, B. Bardakjian
{"title":"调制高频振荡可以利用隐马尔可夫模型识别人类脑电图感兴趣的区域","authors":"Mirna Guirgis, Y. Chinvarun, M. D. Campo, P. Carlen, B. Bardakjian","doi":"10.1109/NER.2015.7146777","DOIUrl":null,"url":null,"abstract":"This study investigated the seizure and non-seizure state transitions in the intracranial electroencephalogram (iEEG) recordings of extratemporal lobe epilepsy patients. Cross-frequency coupling between low and high frequency oscillations in conjunction with an unsupervised learning algorithm - namely, hidden Markov models - was used to objectively identify seizure and non-seizure states as well as transition states. Channels consistently capturing two and/or three distinct states in a 32-channel iEEG array were able to identify regions of interest located in resected tissue of patients who experienced improved post-surgical outcomes.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Modulated high frequency oscillations can identify regions of interest in human iEEG using hidden Markov models\",\"authors\":\"Mirna Guirgis, Y. Chinvarun, M. D. Campo, P. Carlen, B. Bardakjian\",\"doi\":\"10.1109/NER.2015.7146777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated the seizure and non-seizure state transitions in the intracranial electroencephalogram (iEEG) recordings of extratemporal lobe epilepsy patients. Cross-frequency coupling between low and high frequency oscillations in conjunction with an unsupervised learning algorithm - namely, hidden Markov models - was used to objectively identify seizure and non-seizure states as well as transition states. Channels consistently capturing two and/or three distinct states in a 32-channel iEEG array were able to identify regions of interest located in resected tissue of patients who experienced improved post-surgical outcomes.\",\"PeriodicalId\":137451,\"journal\":{\"name\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2015.7146777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2015.7146777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本研究探讨了颞外叶癫痫患者的颅内脑电图(iEEG)记录中癫痫发作和非癫痫状态的转变。低频和高频振荡之间的交叉频率耦合与无监督学习算法(即隐马尔可夫模型)相结合,用于客观地识别癫痫发作和非癫痫发作状态以及过渡状态。在32通道iEEG阵列中,通道持续捕获两个和/或三个不同的状态,能够识别位于切除组织中的感兴趣区域,这些患者经历了改善的术后预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modulated high frequency oscillations can identify regions of interest in human iEEG using hidden Markov models
This study investigated the seizure and non-seizure state transitions in the intracranial electroencephalogram (iEEG) recordings of extratemporal lobe epilepsy patients. Cross-frequency coupling between low and high frequency oscillations in conjunction with an unsupervised learning algorithm - namely, hidden Markov models - was used to objectively identify seizure and non-seizure states as well as transition states. Channels consistently capturing two and/or three distinct states in a 32-channel iEEG array were able to identify regions of interest located in resected tissue of patients who experienced improved post-surgical outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
iNODE in-vivo testing for selective vagus nerve recording and stimulation Computational studies on urinary bladder smooth muscle: Modeling ion channels and their role in generating electrical activity Fast calibration of a thirteen-command BCI by simulating SSVEPs from trains of transient VEPs - towards time-domain SSVEP BCI paradigms A hybrid NMES-exoskeleton for real objects interaction Computationally efficient, configurable, causal, real-time phase detection applied to local field potential oscillations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1