Mirna Guirgis, Y. Chinvarun, M. D. Campo, P. Carlen, B. Bardakjian
{"title":"调制高频振荡可以利用隐马尔可夫模型识别人类脑电图感兴趣的区域","authors":"Mirna Guirgis, Y. Chinvarun, M. D. Campo, P. Carlen, B. Bardakjian","doi":"10.1109/NER.2015.7146777","DOIUrl":null,"url":null,"abstract":"This study investigated the seizure and non-seizure state transitions in the intracranial electroencephalogram (iEEG) recordings of extratemporal lobe epilepsy patients. Cross-frequency coupling between low and high frequency oscillations in conjunction with an unsupervised learning algorithm - namely, hidden Markov models - was used to objectively identify seizure and non-seizure states as well as transition states. Channels consistently capturing two and/or three distinct states in a 32-channel iEEG array were able to identify regions of interest located in resected tissue of patients who experienced improved post-surgical outcomes.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Modulated high frequency oscillations can identify regions of interest in human iEEG using hidden Markov models\",\"authors\":\"Mirna Guirgis, Y. Chinvarun, M. D. Campo, P. Carlen, B. Bardakjian\",\"doi\":\"10.1109/NER.2015.7146777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated the seizure and non-seizure state transitions in the intracranial electroencephalogram (iEEG) recordings of extratemporal lobe epilepsy patients. Cross-frequency coupling between low and high frequency oscillations in conjunction with an unsupervised learning algorithm - namely, hidden Markov models - was used to objectively identify seizure and non-seizure states as well as transition states. Channels consistently capturing two and/or three distinct states in a 32-channel iEEG array were able to identify regions of interest located in resected tissue of patients who experienced improved post-surgical outcomes.\",\"PeriodicalId\":137451,\"journal\":{\"name\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2015.7146777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2015.7146777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modulated high frequency oscillations can identify regions of interest in human iEEG using hidden Markov models
This study investigated the seizure and non-seizure state transitions in the intracranial electroencephalogram (iEEG) recordings of extratemporal lobe epilepsy patients. Cross-frequency coupling between low and high frequency oscillations in conjunction with an unsupervised learning algorithm - namely, hidden Markov models - was used to objectively identify seizure and non-seizure states as well as transition states. Channels consistently capturing two and/or three distinct states in a 32-channel iEEG array were able to identify regions of interest located in resected tissue of patients who experienced improved post-surgical outcomes.