Xiao Sun, K. Hashimoto, Shinya Hamamoto, Ayanori Koizumi, T. Matsuzawa, Tomotaka Teramachi, A. Takanishi
{"title":"基于分离路径和时间规划的爬梯运动轨迹生成","authors":"Xiao Sun, K. Hashimoto, Shinya Hamamoto, Ayanori Koizumi, T. Matsuzawa, Tomotaka Teramachi, A. Takanishi","doi":"10.1109/IROS.2016.7759851","DOIUrl":null,"url":null,"abstract":"This paper introduces a motion planning method to generate ladder climbing motion for a four-limbed robot. This method contains the following points: (1) independent planning of path and time in 3 dimensional space for trajectory planning; (2) path length minimization according to given midpoints. In trajectory planning, arc-length parameterization is used to separate path planning and time planning so that they can be done independently. After path is planned, time planning along the planned path can be given freely to meet our requirement, such as speed and acceleration adjustment for the protection of motors, optimization for dynamics analysis, dynamic obstacle avoidance and so on. Results from simulations and experiments authenticate the validity of our motion generation method.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Trajectory generation for ladder climbing motion with separated path and time planning\",\"authors\":\"Xiao Sun, K. Hashimoto, Shinya Hamamoto, Ayanori Koizumi, T. Matsuzawa, Tomotaka Teramachi, A. Takanishi\",\"doi\":\"10.1109/IROS.2016.7759851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a motion planning method to generate ladder climbing motion for a four-limbed robot. This method contains the following points: (1) independent planning of path and time in 3 dimensional space for trajectory planning; (2) path length minimization according to given midpoints. In trajectory planning, arc-length parameterization is used to separate path planning and time planning so that they can be done independently. After path is planned, time planning along the planned path can be given freely to meet our requirement, such as speed and acceleration adjustment for the protection of motors, optimization for dynamics analysis, dynamic obstacle avoidance and so on. Results from simulations and experiments authenticate the validity of our motion generation method.\",\"PeriodicalId\":296337,\"journal\":{\"name\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2016.7759851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Trajectory generation for ladder climbing motion with separated path and time planning
This paper introduces a motion planning method to generate ladder climbing motion for a four-limbed robot. This method contains the following points: (1) independent planning of path and time in 3 dimensional space for trajectory planning; (2) path length minimization according to given midpoints. In trajectory planning, arc-length parameterization is used to separate path planning and time planning so that they can be done independently. After path is planned, time planning along the planned path can be given freely to meet our requirement, such as speed and acceleration adjustment for the protection of motors, optimization for dynamics analysis, dynamic obstacle avoidance and so on. Results from simulations and experiments authenticate the validity of our motion generation method.