PBNet:根据边界生成特定位置的文本到图像

Tian Tian, Li Liu, Huaxiang Zhang, Dongmei Liu
{"title":"PBNet:根据边界生成特定位置的文本到图像","authors":"Tian Tian, Li Liu, Huaxiang Zhang, Dongmei Liu","doi":"10.1145/3469877.3493594","DOIUrl":null,"url":null,"abstract":"Most existing methods focus on improving the clarity and semantic consistency of the image with a given text, but do not pay attention to the multiple control of generated image content, such as the position of the object in generated image. In this paper, we introduce a novel position-based generative network (PBNet) which can generate fine-grained images with the object at the specified location. PBNet combines iterative structure with generative adversarial network (GAN). A location information embedding module (LIEM) is proposed to combine the location information extracted from the boundary block image with the semantic information extracted from the text. In addition, a silhouette generation module (SGM) is proposed to train the generator to generate object based on location information. The experimental results on CUB dataset demonstrate that PBNet effectively controls the location of the object in the generated image.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PBNet: Position-specific Text-to-image Generation by Boundary\",\"authors\":\"Tian Tian, Li Liu, Huaxiang Zhang, Dongmei Liu\",\"doi\":\"10.1145/3469877.3493594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most existing methods focus on improving the clarity and semantic consistency of the image with a given text, but do not pay attention to the multiple control of generated image content, such as the position of the object in generated image. In this paper, we introduce a novel position-based generative network (PBNet) which can generate fine-grained images with the object at the specified location. PBNet combines iterative structure with generative adversarial network (GAN). A location information embedding module (LIEM) is proposed to combine the location information extracted from the boundary block image with the semantic information extracted from the text. In addition, a silhouette generation module (SGM) is proposed to train the generator to generate object based on location information. The experimental results on CUB dataset demonstrate that PBNet effectively controls the location of the object in the generated image.\",\"PeriodicalId\":210974,\"journal\":{\"name\":\"ACM Multimedia Asia\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469877.3493594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3493594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的方法大多侧重于提高图像与给定文本的清晰度和语义一致性,而没有注意对生成图像内容的多重控制,例如对象在生成图像中的位置。本文介绍了一种新的基于位置的生成网络(PBNet),该网络可以生成具有指定位置目标的细粒度图像。PBNet将迭代结构与生成对抗网络(GAN)相结合。提出了一种位置信息嵌入模块,将从边界块图像中提取的位置信息与从文本中提取的语义信息相结合。此外,提出了一个轮廓生成模块(SGM)来训练生成器根据位置信息生成目标。在CUB数据集上的实验结果表明,PBNet可以有效地控制目标在生成图像中的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PBNet: Position-specific Text-to-image Generation by Boundary
Most existing methods focus on improving the clarity and semantic consistency of the image with a given text, but do not pay attention to the multiple control of generated image content, such as the position of the object in generated image. In this paper, we introduce a novel position-based generative network (PBNet) which can generate fine-grained images with the object at the specified location. PBNet combines iterative structure with generative adversarial network (GAN). A location information embedding module (LIEM) is proposed to combine the location information extracted from the boundary block image with the semantic information extracted from the text. In addition, a silhouette generation module (SGM) is proposed to train the generator to generate object based on location information. The experimental results on CUB dataset demonstrate that PBNet effectively controls the location of the object in the generated image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1