{"title":"基于MEMS平面振动光栅的光学扫描及其应用","authors":"Guangya Zhou, Y. Du, K. Cheo, Hongbin Yu, F. Chau","doi":"10.1109/OMEMS.2010.5672205","DOIUrl":null,"url":null,"abstract":"MEMS optical scanners are highly desired due to their low-power, high-speed scanning. The in-plane vibratory grating scanner is a development in this area which possesses several unique features. The in-plane scanning minimizes the dynamic deformation, allowing for higher-resolution displays. The dispersive element permits splitting the incoming beam into its constituents for analysis and imaging. Coupling a grating platform to an in-plane moving structure is useful for real-time motion measurement which would otherwise be difficult to analyze. These applications are described including a recent development in the structural design of a double-layer layout which further improves the performance of the grating scanner.","PeriodicalId":421895,"journal":{"name":"2010 International Conference on Optical MEMS and Nanophotonics","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optical scanning with MEMS in-plane vibratory gratings and its applications\",\"authors\":\"Guangya Zhou, Y. Du, K. Cheo, Hongbin Yu, F. Chau\",\"doi\":\"10.1109/OMEMS.2010.5672205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MEMS optical scanners are highly desired due to their low-power, high-speed scanning. The in-plane vibratory grating scanner is a development in this area which possesses several unique features. The in-plane scanning minimizes the dynamic deformation, allowing for higher-resolution displays. The dispersive element permits splitting the incoming beam into its constituents for analysis and imaging. Coupling a grating platform to an in-plane moving structure is useful for real-time motion measurement which would otherwise be difficult to analyze. These applications are described including a recent development in the structural design of a double-layer layout which further improves the performance of the grating scanner.\",\"PeriodicalId\":421895,\"journal\":{\"name\":\"2010 International Conference on Optical MEMS and Nanophotonics\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Optical MEMS and Nanophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OMEMS.2010.5672205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Optical MEMS and Nanophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMEMS.2010.5672205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optical scanning with MEMS in-plane vibratory gratings and its applications
MEMS optical scanners are highly desired due to their low-power, high-speed scanning. The in-plane vibratory grating scanner is a development in this area which possesses several unique features. The in-plane scanning minimizes the dynamic deformation, allowing for higher-resolution displays. The dispersive element permits splitting the incoming beam into its constituents for analysis and imaging. Coupling a grating platform to an in-plane moving structure is useful for real-time motion measurement which would otherwise be difficult to analyze. These applications are described including a recent development in the structural design of a double-layer layout which further improves the performance of the grating scanner.