神经特征检测器的进化

Peter R. W. Harvey, J. Boyce
{"title":"神经特征检测器的进化","authors":"Peter R. W. Harvey, J. Boyce","doi":"10.1109/CEC.2000.870321","DOIUrl":null,"url":null,"abstract":"In a quarter of a century of evolutionary computing, nature still seems to be teasing us with its complexity and flexibility whilst we struggle to apply our artificial creations, that perform so beautifully in blocks-world to the real world. We discuss some of the ways in which the biological world has seemed to defy the curse of dimensionality and present the results of an experiment to evolve neural network pattern detectors based on a pre-emptive 'phylogeny'. Strategies discussed are: congruent graduation of objective function and genome complexity; relaxation of objective function specificity; pre-evolved niche recombination; and fractal-like ontogenesis. A phyletic evolutionary architecture is proposed that combines these principles, together with three novel neural net transformations that preserve node-function integrity at different levels of complexity. Using a simple genetic algorithm, a number of 81-node fully recurrent neural nets were evolved to detect intermediate level features in 9/spl times/9 subimages. It is shown that by seeding the population with transformations of pre-evolved 3/spl times/3 detectors of constituent low-level features, evolution converged faster and to a more accurate and general solution than when they were evolved from a random population.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Phyletic evolution of neural feature detectors\",\"authors\":\"Peter R. W. Harvey, J. Boyce\",\"doi\":\"10.1109/CEC.2000.870321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a quarter of a century of evolutionary computing, nature still seems to be teasing us with its complexity and flexibility whilst we struggle to apply our artificial creations, that perform so beautifully in blocks-world to the real world. We discuss some of the ways in which the biological world has seemed to defy the curse of dimensionality and present the results of an experiment to evolve neural network pattern detectors based on a pre-emptive 'phylogeny'. Strategies discussed are: congruent graduation of objective function and genome complexity; relaxation of objective function specificity; pre-evolved niche recombination; and fractal-like ontogenesis. A phyletic evolutionary architecture is proposed that combines these principles, together with three novel neural net transformations that preserve node-function integrity at different levels of complexity. Using a simple genetic algorithm, a number of 81-node fully recurrent neural nets were evolved to detect intermediate level features in 9/spl times/9 subimages. It is shown that by seeding the population with transformations of pre-evolved 3/spl times/3 detectors of constituent low-level features, evolution converged faster and to a more accurate and general solution than when they were evolved from a random population.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在进化计算的四分之一个世纪里,大自然似乎仍然在用它的复杂性和灵活性戏弄我们,而我们却在努力将我们在积木世界中表现得如此美丽的人工创造应用到现实世界中。我们讨论了生物世界似乎无视维度诅咒的一些方式,并提出了基于先发制人的“系统发育”进化神经网络模式检测器的实验结果。讨论的策略有:目标函数与基因组复杂度的一致梯度;目标函数特异性的松弛;前进化生态位重组;以及分形个体发生。提出了一种结合这些原理的种进化架构,以及三种新颖的神经网络转换,在不同的复杂性水平上保持节点功能的完整性。利用简单的遗传算法,进化出若干个81节点的全递归神经网络,以检测9/spl次/9个子图像的中间水平特征。结果表明,与从随机群体中进化时相比,在群体中植入预先进化的3/ sp1次/3个组成低层次特征的检测器的变换,进化收敛得更快,并得到更精确和通用的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phyletic evolution of neural feature detectors
In a quarter of a century of evolutionary computing, nature still seems to be teasing us with its complexity and flexibility whilst we struggle to apply our artificial creations, that perform so beautifully in blocks-world to the real world. We discuss some of the ways in which the biological world has seemed to defy the curse of dimensionality and present the results of an experiment to evolve neural network pattern detectors based on a pre-emptive 'phylogeny'. Strategies discussed are: congruent graduation of objective function and genome complexity; relaxation of objective function specificity; pre-evolved niche recombination; and fractal-like ontogenesis. A phyletic evolutionary architecture is proposed that combines these principles, together with three novel neural net transformations that preserve node-function integrity at different levels of complexity. Using a simple genetic algorithm, a number of 81-node fully recurrent neural nets were evolved to detect intermediate level features in 9/spl times/9 subimages. It is shown that by seeding the population with transformations of pre-evolved 3/spl times/3 detectors of constituent low-level features, evolution converged faster and to a more accurate and general solution than when they were evolved from a random population.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1