基于网络验证的需求响应合约市场的元启发式优化

Eduardo Lacerda, F. Lezama, J. Soares, B. Canizes, Z. Vale
{"title":"基于网络验证的需求响应合约市场的元启发式优化","authors":"Eduardo Lacerda, F. Lezama, J. Soares, B. Canizes, Z. Vale","doi":"10.1109/CEC55065.2022.9870325","DOIUrl":null,"url":null,"abstract":"This article evaluates the performance of different metaheuristics (evolutionary algorithms) solving a cost mini-mization problem in demand response contract markets. The problem considers a contract market in which a distribution system operator (DSO) requests flexibility from aggregators with DR capabilities. We include a network validation approach in the evaluation of solutions, i.e., the DSO determines losses and voltage limit violations depending on the location of aggregators in the network. The validation of the network increases the complexity of the objective function since new network constraints are included in the formulation. Therefore, we advocate the use of metaheuristic optimization and a simulation procedure to overcome this issue. We compare different evolutionary algorithms, including the well-known differential evolution and other two more recent algorithms, the vortex search and the hybrid-adaptive differential evolution with decay function. Results demonstrate the effectiveness of these approaches in solving the proposed complex model under a realistic case study.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metaheuristic Optimization Solving Demand Response Contract Markets with Network Validation\",\"authors\":\"Eduardo Lacerda, F. Lezama, J. Soares, B. Canizes, Z. Vale\",\"doi\":\"10.1109/CEC55065.2022.9870325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article evaluates the performance of different metaheuristics (evolutionary algorithms) solving a cost mini-mization problem in demand response contract markets. The problem considers a contract market in which a distribution system operator (DSO) requests flexibility from aggregators with DR capabilities. We include a network validation approach in the evaluation of solutions, i.e., the DSO determines losses and voltage limit violations depending on the location of aggregators in the network. The validation of the network increases the complexity of the objective function since new network constraints are included in the formulation. Therefore, we advocate the use of metaheuristic optimization and a simulation procedure to overcome this issue. We compare different evolutionary algorithms, including the well-known differential evolution and other two more recent algorithms, the vortex search and the hybrid-adaptive differential evolution with decay function. Results demonstrate the effectiveness of these approaches in solving the proposed complex model under a realistic case study.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文评估了不同的元启发式(进化算法)在需求响应契约市场中解决成本最小化问题的性能。该问题考虑了一个合同市场,其中一个分配系统运营商(DSO)要求具有DR功能的聚合器具有灵活性。我们在解决方案的评估中包含了一种网络验证方法,即,DSO根据网络中聚合器的位置确定损耗和电压限制违规。网络的验证增加了目标函数的复杂性,因为新的网络约束包含在公式中。因此,我们提倡使用元启发式优化和模拟程序来克服这个问题。我们比较了不同的进化算法,包括著名的差分进化和其他两种较新的算法,涡旋搜索和带有衰减函数的混合自适应差分进化。结果表明,这些方法在求解复杂模型时是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metaheuristic Optimization Solving Demand Response Contract Markets with Network Validation
This article evaluates the performance of different metaheuristics (evolutionary algorithms) solving a cost mini-mization problem in demand response contract markets. The problem considers a contract market in which a distribution system operator (DSO) requests flexibility from aggregators with DR capabilities. We include a network validation approach in the evaluation of solutions, i.e., the DSO determines losses and voltage limit violations depending on the location of aggregators in the network. The validation of the network increases the complexity of the objective function since new network constraints are included in the formulation. Therefore, we advocate the use of metaheuristic optimization and a simulation procedure to overcome this issue. We compare different evolutionary algorithms, including the well-known differential evolution and other two more recent algorithms, the vortex search and the hybrid-adaptive differential evolution with decay function. Results demonstrate the effectiveness of these approaches in solving the proposed complex model under a realistic case study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1