吸湿量对特殊正交异性复合材料板冲击响应的影响

F. Ahmad, F. Abbassi, S. Miran
{"title":"吸湿量对特殊正交异性复合材料板冲击响应的影响","authors":"F. Ahmad, F. Abbassi, S. Miran","doi":"10.1115/imece2019-12221","DOIUrl":null,"url":null,"abstract":"\n This paper addresses the hygroscopic effects on the impact response of specially-orthotropic carbon fiber reinforced polymer composite plates under low-velocity impact loading. The material used in this study is Toray T800/3900 which is consist of carbon fibers and epoxy resin. For different percentage of moisture content by weight in the composite plates, low-velocity impact tests were done by using the 8-ply unidirectional [UD] and cross-ply [CP] composite plates with newly designed mini-drop tower testing machine. To study the hygroscopic effects, specimens were impacted by constant weight of impactor (3.44 Kg) with fixed impact height of 0.70 m corresponding to 23.62 J impact energy. The experiments were carried out on plates with dimension of 125 mm × 125 mm × 1.5 mm for simply supported boundary conditions. All UD composite plates were broken into two parts, but the impactor bounces back after hitting the top layer of the CP composite plate for all conditions. The strength of the UD composite plates decreased with increase of moisture contents, but with the increased of moisture contents, a small change was observed in the peak force, time to peak force values and absorbed energy for the CP composite plates. The large size damage areas were observed for wet plates as compared to dry plates. Absorbed moisture contents also have effect on the impactor velocity and impactor displacement.","PeriodicalId":119220,"journal":{"name":"Volume 1: Advances in Aerospace Technology","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Absorbed Moisture Content on the Impact Response of Specially-Orthotropic Composite Plates\",\"authors\":\"F. Ahmad, F. Abbassi, S. Miran\",\"doi\":\"10.1115/imece2019-12221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper addresses the hygroscopic effects on the impact response of specially-orthotropic carbon fiber reinforced polymer composite plates under low-velocity impact loading. The material used in this study is Toray T800/3900 which is consist of carbon fibers and epoxy resin. For different percentage of moisture content by weight in the composite plates, low-velocity impact tests were done by using the 8-ply unidirectional [UD] and cross-ply [CP] composite plates with newly designed mini-drop tower testing machine. To study the hygroscopic effects, specimens were impacted by constant weight of impactor (3.44 Kg) with fixed impact height of 0.70 m corresponding to 23.62 J impact energy. The experiments were carried out on plates with dimension of 125 mm × 125 mm × 1.5 mm for simply supported boundary conditions. All UD composite plates were broken into two parts, but the impactor bounces back after hitting the top layer of the CP composite plate for all conditions. The strength of the UD composite plates decreased with increase of moisture contents, but with the increased of moisture contents, a small change was observed in the peak force, time to peak force values and absorbed energy for the CP composite plates. The large size damage areas were observed for wet plates as compared to dry plates. Absorbed moisture contents also have effect on the impactor velocity and impactor displacement.\",\"PeriodicalId\":119220,\"journal\":{\"name\":\"Volume 1: Advances in Aerospace Technology\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Advances in Aerospace Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2019-12221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-12221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了低速冲击载荷下吸湿性对特殊正交异性碳纤维增强聚合物复合材料板冲击响应的影响。本研究使用的材料是东丽T800/3900,由碳纤维和环氧树脂组成。采用新设计的微型落塔试验机,对8层单向复合材料(UD)和交叉复合材料(CP)进行了不同重量含水率的低速冲击试验。为研究吸湿效应,采用定重(3.44 Kg)冲击器冲击试件,固定冲击高度0.70 m,对应23.62 J冲击能量。实验在尺寸为125 mm × 125 mm × 1.5 mm的板上进行,边界条件为简支。所有UD复合板都被分成两部分,但在所有情况下,冲击器都在撞击CP复合板的顶层后反弹回来。UD复合材料板的强度随含水率的增加而降低,而CP复合材料板的峰值力、峰值力值和吸收能量随含水率的增加变化不大。与干板相比,湿板观察到较大尺寸的损伤区域。吸湿量对冲击器速度和位移也有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Absorbed Moisture Content on the Impact Response of Specially-Orthotropic Composite Plates
This paper addresses the hygroscopic effects on the impact response of specially-orthotropic carbon fiber reinforced polymer composite plates under low-velocity impact loading. The material used in this study is Toray T800/3900 which is consist of carbon fibers and epoxy resin. For different percentage of moisture content by weight in the composite plates, low-velocity impact tests were done by using the 8-ply unidirectional [UD] and cross-ply [CP] composite plates with newly designed mini-drop tower testing machine. To study the hygroscopic effects, specimens were impacted by constant weight of impactor (3.44 Kg) with fixed impact height of 0.70 m corresponding to 23.62 J impact energy. The experiments were carried out on plates with dimension of 125 mm × 125 mm × 1.5 mm for simply supported boundary conditions. All UD composite plates were broken into two parts, but the impactor bounces back after hitting the top layer of the CP composite plate for all conditions. The strength of the UD composite plates decreased with increase of moisture contents, but with the increased of moisture contents, a small change was observed in the peak force, time to peak force values and absorbed energy for the CP composite plates. The large size damage areas were observed for wet plates as compared to dry plates. Absorbed moisture contents also have effect on the impactor velocity and impactor displacement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Best Structural Theories for Free Vibrations of Sandwich Composites via Machine Learning Effect of Cryogenic Temperature Rolling on High Speed Impact Behavior of AA 6082 Thin Targets Neural Network Inverse Based Omnidirectional Rotation Decoupling Control to the Electrodynamic Reaction Sphere Structural Dynamic Testing Results for Air-Independent Proton Exchange Membrane (PEM) Fuel Cell Technologies for Space Applications Effect of Shear Overloads on Crack Propagation in Al-7075 Under In-Plane Biaxial Fatigue Loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1