{"title":"基于熵的纹理自适应矢量场模糊特征可视化","authors":"Huaihui Wang, Huaxun Xu, L. Zeng, Sikun Li","doi":"10.1109/ICVRV.2011.41","DOIUrl":null,"url":null,"abstract":"Texture control is a challenging issue in texture-based feature visualization. In order to visualize as more information as we can, this paper presents a texture adaptation technique for fuzzy feature visualization of 3D vector field, taking into account information quantity carried by vector field and texture based on extended information entropy. Two definitions of information measurement for 3D vector field and noise texture, MIE and RNIE, are proposed to quantitatively represent the information carried by them. A noise generation algorithm based on three principles derived from minimal differentia of MIE and RNIE is designed to obtain an approximately optimal distribution of noise fragments which shows more details than those used before. A discussion of results is included to demonstrate our algorithm which leads to a more reasonable visualization results based on fuzzy feature measurement and information quantity.","PeriodicalId":239933,"journal":{"name":"2011 International Conference on Virtual Reality and Visualization","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fuzzy Feature Visualization of Vector Field by Entropy-Based Texture Adaptation\",\"authors\":\"Huaihui Wang, Huaxun Xu, L. Zeng, Sikun Li\",\"doi\":\"10.1109/ICVRV.2011.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Texture control is a challenging issue in texture-based feature visualization. In order to visualize as more information as we can, this paper presents a texture adaptation technique for fuzzy feature visualization of 3D vector field, taking into account information quantity carried by vector field and texture based on extended information entropy. Two definitions of information measurement for 3D vector field and noise texture, MIE and RNIE, are proposed to quantitatively represent the information carried by them. A noise generation algorithm based on three principles derived from minimal differentia of MIE and RNIE is designed to obtain an approximately optimal distribution of noise fragments which shows more details than those used before. A discussion of results is included to demonstrate our algorithm which leads to a more reasonable visualization results based on fuzzy feature measurement and information quantity.\",\"PeriodicalId\":239933,\"journal\":{\"name\":\"2011 International Conference on Virtual Reality and Visualization\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Virtual Reality and Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVRV.2011.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Virtual Reality and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2011.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fuzzy Feature Visualization of Vector Field by Entropy-Based Texture Adaptation
Texture control is a challenging issue in texture-based feature visualization. In order to visualize as more information as we can, this paper presents a texture adaptation technique for fuzzy feature visualization of 3D vector field, taking into account information quantity carried by vector field and texture based on extended information entropy. Two definitions of information measurement for 3D vector field and noise texture, MIE and RNIE, are proposed to quantitatively represent the information carried by them. A noise generation algorithm based on three principles derived from minimal differentia of MIE and RNIE is designed to obtain an approximately optimal distribution of noise fragments which shows more details than those used before. A discussion of results is included to demonstrate our algorithm which leads to a more reasonable visualization results based on fuzzy feature measurement and information quantity.