{"title":"3C-SiC/SiO2 MOS电容器的制备及其介电击穿","authors":"Fan Li, Song Qiu, M. Jennings, P. Mawby","doi":"10.1109/DEMPED.2019.8864836","DOIUrl":null,"url":null,"abstract":"MOS capacitors with thick (≈65nm) SiO2 gate oxide were fabricated on 3C-SiC/Si substrates and characterised (CV and IV) at room temperature to study the state of the art 3C-SiC/SiO2 interface. A low interface trap density of ~2.5×1011cm−2eV−1was obtained on N2O annealed devices using the high-low method. Gate oxide was biased with elevated voltage and the distribution of cumulative failed devices was studied. Two failure mechanisms were identified with mechanism 1 dominating the 6-8.5MV/cm range, and mechanism 2 becoming more obvious above S.5MV/cm. The failure rate of fabricated MOS capacitors with a diameter of 100µm at 3MV/cm and room temperature was estimated to be ~3450 PPM.","PeriodicalId":397001,"journal":{"name":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fabrication and Dielectric Breakdown of 3C-SiC/SiO2 MOS Capacitors\",\"authors\":\"Fan Li, Song Qiu, M. Jennings, P. Mawby\",\"doi\":\"10.1109/DEMPED.2019.8864836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MOS capacitors with thick (≈65nm) SiO2 gate oxide were fabricated on 3C-SiC/Si substrates and characterised (CV and IV) at room temperature to study the state of the art 3C-SiC/SiO2 interface. A low interface trap density of ~2.5×1011cm−2eV−1was obtained on N2O annealed devices using the high-low method. Gate oxide was biased with elevated voltage and the distribution of cumulative failed devices was studied. Two failure mechanisms were identified with mechanism 1 dominating the 6-8.5MV/cm range, and mechanism 2 becoming more obvious above S.5MV/cm. The failure rate of fabricated MOS capacitors with a diameter of 100µm at 3MV/cm and room temperature was estimated to be ~3450 PPM.\",\"PeriodicalId\":397001,\"journal\":{\"name\":\"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEMPED.2019.8864836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2019.8864836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication and Dielectric Breakdown of 3C-SiC/SiO2 MOS Capacitors
MOS capacitors with thick (≈65nm) SiO2 gate oxide were fabricated on 3C-SiC/Si substrates and characterised (CV and IV) at room temperature to study the state of the art 3C-SiC/SiO2 interface. A low interface trap density of ~2.5×1011cm−2eV−1was obtained on N2O annealed devices using the high-low method. Gate oxide was biased with elevated voltage and the distribution of cumulative failed devices was studied. Two failure mechanisms were identified with mechanism 1 dominating the 6-8.5MV/cm range, and mechanism 2 becoming more obvious above S.5MV/cm. The failure rate of fabricated MOS capacitors with a diameter of 100µm at 3MV/cm and room temperature was estimated to be ~3450 PPM.