一种检测眼动数据中用户混淆的神经结构

Shane D. V. Sims, C. Conati
{"title":"一种检测眼动数据中用户混淆的神经结构","authors":"Shane D. V. Sims, C. Conati","doi":"10.1145/3382507.3418828","DOIUrl":null,"url":null,"abstract":"Encouraged by the success of deep learning in a variety of domains, we investigate the effectiveness of a novel application of such methods for detecting user confusion with eye-tracking data. We introduce an architecture that uses RNN and CNN sub-models in parallel, to take advantage of the temporal and visuospatial aspects of our data. Experiments with a dataset of user interactions with the ValueChart visualization tool show that our model outperforms an existing model based on a Random Forest classifier, resulting in a 22% improvement in combined confused & not confused class accuracies.","PeriodicalId":402394,"journal":{"name":"Proceedings of the 2020 International Conference on Multimodal Interaction","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A Neural Architecture for Detecting User Confusion in Eye-tracking Data\",\"authors\":\"Shane D. V. Sims, C. Conati\",\"doi\":\"10.1145/3382507.3418828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Encouraged by the success of deep learning in a variety of domains, we investigate the effectiveness of a novel application of such methods for detecting user confusion with eye-tracking data. We introduce an architecture that uses RNN and CNN sub-models in parallel, to take advantage of the temporal and visuospatial aspects of our data. Experiments with a dataset of user interactions with the ValueChart visualization tool show that our model outperforms an existing model based on a Random Forest classifier, resulting in a 22% improvement in combined confused & not confused class accuracies.\",\"PeriodicalId\":402394,\"journal\":{\"name\":\"Proceedings of the 2020 International Conference on Multimodal Interaction\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3382507.3418828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3382507.3418828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

受深度学习在各个领域取得成功的鼓舞,我们研究了这种方法在使用眼动追踪数据检测用户混淆的新应用的有效性。我们引入了一个并行使用RNN和CNN子模型的架构,以利用我们数据的时间和视觉空间方面。使用ValueChart可视化工具的用户交互数据集进行的实验表明,我们的模型优于基于随机森林分类器的现有模型,导致混淆和非混淆类别的组合准确率提高22%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Neural Architecture for Detecting User Confusion in Eye-tracking Data
Encouraged by the success of deep learning in a variety of domains, we investigate the effectiveness of a novel application of such methods for detecting user confusion with eye-tracking data. We introduce an architecture that uses RNN and CNN sub-models in parallel, to take advantage of the temporal and visuospatial aspects of our data. Experiments with a dataset of user interactions with the ValueChart visualization tool show that our model outperforms an existing model based on a Random Forest classifier, resulting in a 22% improvement in combined confused & not confused class accuracies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OpenSense: A Platform for Multimodal Data Acquisition and Behavior Perception Human-centered Multimodal Machine Intelligence Touch Recognition with Attentive End-to-End Model MORSE: MultimOdal sentiment analysis for Real-life SEttings Temporal Attention and Consistency Measuring for Video Question Answering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1