用于超高速粒子捕获的光学透明二氧化硅气凝胶的制备及其性能

Liu Guangwu, Li Yangang
{"title":"用于超高速粒子捕获的光学透明二氧化硅气凝胶的制备及其性能","authors":"Liu Guangwu, Li Yangang","doi":"10.1109/ICMAE.2016.7549517","DOIUrl":null,"url":null,"abstract":"Optically transparent silica aerogel with high specific surface area and low density based on tetramethyl orthosilicate (TMOS) were prepared by using a two-step sol-gel process. Obtained aerogels are more transparent than conventional samples, and the refractive index is well controlled in the acetonitrile supercritical drying process. We developed monolithic aerogels with a density of 0.04g/cm3 as space dust capturer. The microstructure and morphology of highly transparence silica aerogels were characterized by the specific surface area, SEM, UV-Vis and the pore size distribution techniques. The results shown that highly transparence silica aerogels are with excellent performance in physical properties, such as high optical transmittance (86.4%, 800 nm), low density (0.04 g/cm3), high specific surface area (925.4 m /g) and large pore volume (2.4 cm3/g). Which are critical characteristics for practical applications of highly transparent silica aerogel, particularly in particle capture areas, for easy observation and lossless capture.","PeriodicalId":371629,"journal":{"name":"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fabrication and properties of optically transparent silica aerogels for hypervelocity particle capture\",\"authors\":\"Liu Guangwu, Li Yangang\",\"doi\":\"10.1109/ICMAE.2016.7549517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optically transparent silica aerogel with high specific surface area and low density based on tetramethyl orthosilicate (TMOS) were prepared by using a two-step sol-gel process. Obtained aerogels are more transparent than conventional samples, and the refractive index is well controlled in the acetonitrile supercritical drying process. We developed monolithic aerogels with a density of 0.04g/cm3 as space dust capturer. The microstructure and morphology of highly transparence silica aerogels were characterized by the specific surface area, SEM, UV-Vis and the pore size distribution techniques. The results shown that highly transparence silica aerogels are with excellent performance in physical properties, such as high optical transmittance (86.4%, 800 nm), low density (0.04 g/cm3), high specific surface area (925.4 m /g) and large pore volume (2.4 cm3/g). Which are critical characteristics for practical applications of highly transparent silica aerogel, particularly in particle capture areas, for easy observation and lossless capture.\",\"PeriodicalId\":371629,\"journal\":{\"name\":\"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMAE.2016.7549517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMAE.2016.7549517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

以正硅酸四甲基(TMOS)为基料,采用溶胶-凝胶两步法制备了高比表面积、低密度的光学透明二氧化硅气凝胶。所得气凝胶比常规样品更透明,在乙腈超临界干燥过程中折射率得到了很好的控制。我们开发了密度为0.04g/cm3的单片气凝胶作为空间尘埃捕集器。采用比表面积、扫描电镜、紫外可见光谱和孔径分布技术对高透明二氧化硅气凝胶的微观结构和形貌进行了表征。结果表明,高透明二氧化硅气凝胶具有高透光率(86.4%,800 nm)、低密度(0.04 g/cm3)、高比表面积(925.4 m /g)和大孔体积(2.4 cm3/g)等优异的物理性能。这是高透明二氧化硅气凝胶实际应用的关键特性,特别是在颗粒捕获区域,便于观察和无损捕获。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication and properties of optically transparent silica aerogels for hypervelocity particle capture
Optically transparent silica aerogel with high specific surface area and low density based on tetramethyl orthosilicate (TMOS) were prepared by using a two-step sol-gel process. Obtained aerogels are more transparent than conventional samples, and the refractive index is well controlled in the acetonitrile supercritical drying process. We developed monolithic aerogels with a density of 0.04g/cm3 as space dust capturer. The microstructure and morphology of highly transparence silica aerogels were characterized by the specific surface area, SEM, UV-Vis and the pore size distribution techniques. The results shown that highly transparence silica aerogels are with excellent performance in physical properties, such as high optical transmittance (86.4%, 800 nm), low density (0.04 g/cm3), high specific surface area (925.4 m /g) and large pore volume (2.4 cm3/g). Which are critical characteristics for practical applications of highly transparent silica aerogel, particularly in particle capture areas, for easy observation and lossless capture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D peak based long range rover localization Demonstrating a holographic memory having 100 Mrad total-ionizing-dose tolerance Coupling acoustic cavitation and solidification in the modeling of light alloy melt ultrasonic treatment Dynamic analysis of vibration casting equipment Experimental study on internal flowfield characteristics and start-unstart behaviour in a two-dimensional variable geometry inlet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1