{"title":"基于中间体的三维集成电路成本建模与分析","authors":"Ying-Wen Chou, Po-Yuan Chen, Mincent Lee, Cheng-Wen Wu","doi":"10.1109/VTS.2012.6231088","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3D) integration has recently become a popular technology for integrated circuits (IC). 3D IC with the passive silicon interposer is currently the main trend in the industry, especially for processor-memory integration. Evaluating the economic efficiency of test operations in the interposer-based 3D IC thus is important. We propose a cost model for the Die-to-Wafer (D2W) and Die-to-Die (D2D) stacking, including manufacturing cost and test cost. A tool which is based on the proposed cost model is developed. We use this tool for cost analysis and for finding the most cost effective test flow. The results show that, in some applications, test flows including the iterative known-good stack (KGS) test and the pre-bond interposer test significantly reduce the cost, when the KGS test yield is lower than 98.2% and the pre-bond interposer test yield is lower than 99.38%. A Shmoo plot is depicted to show the lower bound of the yield of the final package level test, given the number of stacked dies and the final yield. For different applications, the proposed model evaluates the critical yield or cost values, which helps the designers to determine the most cost effective test flow and the system architecture.","PeriodicalId":169611,"journal":{"name":"2012 IEEE 30th VLSI Test Symposium (VTS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Cost modeling and analysis for interposer-based three-dimensional IC\",\"authors\":\"Ying-Wen Chou, Po-Yuan Chen, Mincent Lee, Cheng-Wen Wu\",\"doi\":\"10.1109/VTS.2012.6231088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-dimensional (3D) integration has recently become a popular technology for integrated circuits (IC). 3D IC with the passive silicon interposer is currently the main trend in the industry, especially for processor-memory integration. Evaluating the economic efficiency of test operations in the interposer-based 3D IC thus is important. We propose a cost model for the Die-to-Wafer (D2W) and Die-to-Die (D2D) stacking, including manufacturing cost and test cost. A tool which is based on the proposed cost model is developed. We use this tool for cost analysis and for finding the most cost effective test flow. The results show that, in some applications, test flows including the iterative known-good stack (KGS) test and the pre-bond interposer test significantly reduce the cost, when the KGS test yield is lower than 98.2% and the pre-bond interposer test yield is lower than 99.38%. A Shmoo plot is depicted to show the lower bound of the yield of the final package level test, given the number of stacked dies and the final yield. For different applications, the proposed model evaluates the critical yield or cost values, which helps the designers to determine the most cost effective test flow and the system architecture.\",\"PeriodicalId\":169611,\"journal\":{\"name\":\"2012 IEEE 30th VLSI Test Symposium (VTS)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 30th VLSI Test Symposium (VTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTS.2012.6231088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 30th VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2012.6231088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cost modeling and analysis for interposer-based three-dimensional IC
Three-dimensional (3D) integration has recently become a popular technology for integrated circuits (IC). 3D IC with the passive silicon interposer is currently the main trend in the industry, especially for processor-memory integration. Evaluating the economic efficiency of test operations in the interposer-based 3D IC thus is important. We propose a cost model for the Die-to-Wafer (D2W) and Die-to-Die (D2D) stacking, including manufacturing cost and test cost. A tool which is based on the proposed cost model is developed. We use this tool for cost analysis and for finding the most cost effective test flow. The results show that, in some applications, test flows including the iterative known-good stack (KGS) test and the pre-bond interposer test significantly reduce the cost, when the KGS test yield is lower than 98.2% and the pre-bond interposer test yield is lower than 99.38%. A Shmoo plot is depicted to show the lower bound of the yield of the final package level test, given the number of stacked dies and the final yield. For different applications, the proposed model evaluates the critical yield or cost values, which helps the designers to determine the most cost effective test flow and the system architecture.