基于强化学习的机器人装配阻抗参数拟实整定

Yong-Geon Kim, Min-Woo Na, Jae-Bok Song
{"title":"基于强化学习的机器人装配阻抗参数拟实整定","authors":"Yong-Geon Kim, Min-Woo Na, Jae-Bok Song","doi":"10.23919/ICCAS52745.2021.9649923","DOIUrl":null,"url":null,"abstract":"When performing robotic assembly, a task should be conducted through force-based control such as impedance control. Using impedance control, it is possible to control the contact force by appropriately adjusting the impedance parameters. However, the impedance parameters should be set by the user because it is difficult to accurately recognize the dynamics of the contact environment, which takes a lot of time because it should be performed whenever the assembly task changes. Moreover, the parameters may not be optimal because it depends on the experience and skill level of the user. To this end, a reinforcement learning-based impedance parameter tuning method is proposed in this study. Since this method uses only the physics-based robotic simulation on the virtual environment, there is no risk of damaging the robots or parts and learning time can be significantly reduced. The proposed method was verified by assembling an HDMI connector with a tolerance of 0.03 mm. Impedance parameters were learned in the virtual environment and transferred to the real environment. Finally, it was confirmed that parameter tuning for impedance without the aid of the user is possible by using the proposed method.","PeriodicalId":411064,"journal":{"name":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reinforcement Learning-based Sim-to-Real Impedance Parameter Tuning for Robotic Assembly\",\"authors\":\"Yong-Geon Kim, Min-Woo Na, Jae-Bok Song\",\"doi\":\"10.23919/ICCAS52745.2021.9649923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When performing robotic assembly, a task should be conducted through force-based control such as impedance control. Using impedance control, it is possible to control the contact force by appropriately adjusting the impedance parameters. However, the impedance parameters should be set by the user because it is difficult to accurately recognize the dynamics of the contact environment, which takes a lot of time because it should be performed whenever the assembly task changes. Moreover, the parameters may not be optimal because it depends on the experience and skill level of the user. To this end, a reinforcement learning-based impedance parameter tuning method is proposed in this study. Since this method uses only the physics-based robotic simulation on the virtual environment, there is no risk of damaging the robots or parts and learning time can be significantly reduced. The proposed method was verified by assembling an HDMI connector with a tolerance of 0.03 mm. Impedance parameters were learned in the virtual environment and transferred to the real environment. Finally, it was confirmed that parameter tuning for impedance without the aid of the user is possible by using the proposed method.\",\"PeriodicalId\":411064,\"journal\":{\"name\":\"2021 21st International Conference on Control, Automation and Systems (ICCAS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 21st International Conference on Control, Automation and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICCAS52745.2021.9649923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS52745.2021.9649923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在进行机器人装配时,需要通过阻抗控制等基于力的控制来完成任务。利用阻抗控制,可以通过适当调整阻抗参数来控制接触力。然而,阻抗参数应由用户设置,因为很难准确识别接触环境的动态,这需要大量的时间,因为它应该在装配任务发生变化时执行。此外,参数可能不是最优的,因为它取决于用户的经验和技能水平。为此,本文提出了一种基于强化学习的阻抗参数整定方法。由于该方法仅在虚拟环境中使用基于物理的机器人仿真,因此不存在损坏机器人或部件的风险,并且可以显着减少学习时间。通过装配公差为0.03 mm的HDMI连接器,验证了该方法的正确性。在虚拟环境中学习阻抗参数并将其传递到真实环境中。最后,验证了该方法可以在没有用户辅助的情况下实现阻抗参数的整定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement Learning-based Sim-to-Real Impedance Parameter Tuning for Robotic Assembly
When performing robotic assembly, a task should be conducted through force-based control such as impedance control. Using impedance control, it is possible to control the contact force by appropriately adjusting the impedance parameters. However, the impedance parameters should be set by the user because it is difficult to accurately recognize the dynamics of the contact environment, which takes a lot of time because it should be performed whenever the assembly task changes. Moreover, the parameters may not be optimal because it depends on the experience and skill level of the user. To this end, a reinforcement learning-based impedance parameter tuning method is proposed in this study. Since this method uses only the physics-based robotic simulation on the virtual environment, there is no risk of damaging the robots or parts and learning time can be significantly reduced. The proposed method was verified by assembling an HDMI connector with a tolerance of 0.03 mm. Impedance parameters were learned in the virtual environment and transferred to the real environment. Finally, it was confirmed that parameter tuning for impedance without the aid of the user is possible by using the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meta Reinforcement Learning Based Underwater Manipulator Control Object Detection and Tracking System with Improved DBSCAN Clustering using Radar on Unmanned Surface Vehicle A Method for Evaluating of Asymmetry on Cleft Lip Using Symmetry Plane Average Blurring-based Anomaly Detection for Vision-based Mask Inspection Systems Design and Fabrication of a Robotic Knee-Type Prosthetic Leg with a Two-Way Hydraulic Cylinder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1