M. Violetti, C. Affolderbach, F. Merli, J. Zurcher, G. Mileti, A. Skrivervik
{"title":"铷原子频率标准小型化微波腔","authors":"M. Violetti, C. Affolderbach, F. Merli, J. Zurcher, G. Mileti, A. Skrivervik","doi":"10.23919/EUMC.2012.6459275","DOIUrl":null,"url":null,"abstract":"In view of mobile and battery-powered applications, there is an increasing demand for more radically miniaturized and low-power atomic frequency standards. For the miniaturization of a double-resonance Rubidium atomic clocks, the size reduction of the microwave cavity or microwave resonator (MWR) to well below the wavelength of the atomic transition (6.835 GHz in the case of 87Rb) has been a longstanding issue. In this paper we propose a new miniaturized MWR, the μ-LGR, that meets the requirements for the atomic clock application while the structure is very compact, and assembly can be performed using standard and potentially low-cost techniques. Concept of the proposed device was proven through simulation and prototypes were successfully tested, showing the μ-LGR to be suitable for the integration in a miniaturized atomic clock.","PeriodicalId":243164,"journal":{"name":"2012 7th European Microwave Integrated Circuit Conference","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Miniaturized microwave cavity for Rubidium atomic frequency standards\",\"authors\":\"M. Violetti, C. Affolderbach, F. Merli, J. Zurcher, G. Mileti, A. Skrivervik\",\"doi\":\"10.23919/EUMC.2012.6459275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of mobile and battery-powered applications, there is an increasing demand for more radically miniaturized and low-power atomic frequency standards. For the miniaturization of a double-resonance Rubidium atomic clocks, the size reduction of the microwave cavity or microwave resonator (MWR) to well below the wavelength of the atomic transition (6.835 GHz in the case of 87Rb) has been a longstanding issue. In this paper we propose a new miniaturized MWR, the μ-LGR, that meets the requirements for the atomic clock application while the structure is very compact, and assembly can be performed using standard and potentially low-cost techniques. Concept of the proposed device was proven through simulation and prototypes were successfully tested, showing the μ-LGR to be suitable for the integration in a miniaturized atomic clock.\",\"PeriodicalId\":243164,\"journal\":{\"name\":\"2012 7th European Microwave Integrated Circuit Conference\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 7th European Microwave Integrated Circuit Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUMC.2012.6459275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th European Microwave Integrated Circuit Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUMC.2012.6459275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Miniaturized microwave cavity for Rubidium atomic frequency standards
In view of mobile and battery-powered applications, there is an increasing demand for more radically miniaturized and low-power atomic frequency standards. For the miniaturization of a double-resonance Rubidium atomic clocks, the size reduction of the microwave cavity or microwave resonator (MWR) to well below the wavelength of the atomic transition (6.835 GHz in the case of 87Rb) has been a longstanding issue. In this paper we propose a new miniaturized MWR, the μ-LGR, that meets the requirements for the atomic clock application while the structure is very compact, and assembly can be performed using standard and potentially low-cost techniques. Concept of the proposed device was proven through simulation and prototypes were successfully tested, showing the μ-LGR to be suitable for the integration in a miniaturized atomic clock.