基于机器学习的个性化电影推荐系统研究与实现

Xianting Feng, Jianming Hu, Xin Zhu
{"title":"基于机器学习的个性化电影推荐系统研究与实现","authors":"Xianting Feng, Jianming Hu, Xin Zhu","doi":"10.1109/cost57098.2022.00025","DOIUrl":null,"url":null,"abstract":"With the development of the Internet industry, the information age presents a trend of “information overload”, and people's efficiency in extracting effective information is getting lower and lower. In order to relieve people's browsing pressure, this paper implements a collaborative filtering algorithm based on machine learning for the movie recommendation, citing the principle of personalized recommendation system proposed by Robert Armstrong and others in the United States in 1995. First, the rating data is preprocessed and visualized in consideration of the user's real behavior. Then implement the algorithm mentioned above, and use the test indicators to measure the performance of the recommender system and optimize the system parameters. Finally, using software engineering and Java front-end knowledge based on Spring+SpringMVC+Mybaits (SSM) to conduct demand analysis, functional analysis, non-functional analysis and establish a database. At last, use java database connectivity (JDBC) to link the database Mysql, and finally realized a movie recommender system with basic functions.","PeriodicalId":135595,"journal":{"name":"2022 International Conference on Culture-Oriented Science and Technology (CoST)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine Learning Based Personalized Movie Research and Implementation of Recommendation System\",\"authors\":\"Xianting Feng, Jianming Hu, Xin Zhu\",\"doi\":\"10.1109/cost57098.2022.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of the Internet industry, the information age presents a trend of “information overload”, and people's efficiency in extracting effective information is getting lower and lower. In order to relieve people's browsing pressure, this paper implements a collaborative filtering algorithm based on machine learning for the movie recommendation, citing the principle of personalized recommendation system proposed by Robert Armstrong and others in the United States in 1995. First, the rating data is preprocessed and visualized in consideration of the user's real behavior. Then implement the algorithm mentioned above, and use the test indicators to measure the performance of the recommender system and optimize the system parameters. Finally, using software engineering and Java front-end knowledge based on Spring+SpringMVC+Mybaits (SSM) to conduct demand analysis, functional analysis, non-functional analysis and establish a database. At last, use java database connectivity (JDBC) to link the database Mysql, and finally realized a movie recommender system with basic functions.\",\"PeriodicalId\":135595,\"journal\":{\"name\":\"2022 International Conference on Culture-Oriented Science and Technology (CoST)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Culture-Oriented Science and Technology (CoST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cost57098.2022.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Culture-Oriented Science and Technology (CoST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cost57098.2022.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着互联网产业的发展,信息时代呈现出“信息超载”的趋势,人们提取有效信息的效率越来越低。为了缓解人们的浏览压力,本文引用美国Robert Armstrong等人1995年提出的个性化推荐系统原理,实现了一种基于机器学习的协同过滤算法用于电影推荐。首先,根据用户的真实行为对评分数据进行预处理和可视化。然后实现上述算法,并利用测试指标来衡量推荐系统的性能,优化系统参数。最后运用软件工程和Java前端知识,基于Spring+SpringMVC+Mybaits (SSM)进行需求分析、功能分析、非功能分析并建立数据库。最后,利用java数据库连接(JDBC)与数据库Mysql进行链接,最终实现了一个具有基本功能的电影推荐系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Based Personalized Movie Research and Implementation of Recommendation System
With the development of the Internet industry, the information age presents a trend of “information overload”, and people's efficiency in extracting effective information is getting lower and lower. In order to relieve people's browsing pressure, this paper implements a collaborative filtering algorithm based on machine learning for the movie recommendation, citing the principle of personalized recommendation system proposed by Robert Armstrong and others in the United States in 1995. First, the rating data is preprocessed and visualized in consideration of the user's real behavior. Then implement the algorithm mentioned above, and use the test indicators to measure the performance of the recommender system and optimize the system parameters. Finally, using software engineering and Java front-end knowledge based on Spring+SpringMVC+Mybaits (SSM) to conduct demand analysis, functional analysis, non-functional analysis and establish a database. At last, use java database connectivity (JDBC) to link the database Mysql, and finally realized a movie recommender system with basic functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Vision Enhancement Network for Image Quality Assessment Analysis and Application of Tourists’ Sentiment Based on Hotel Comment Data Automatic Image Generation of Peking Opera Face using StyleGAN2 Analysis of Emotional Influencing Factors of Online Travel Reviews Based on BiLSTM-CNN Performance comparison of deep learning methods on hand bone segmentation and bone age assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1