结合分类器进行蛋白质二级结构预测

Z. Aydın, Ömmu Gülsüm Uzut
{"title":"结合分类器进行蛋白质二级结构预测","authors":"Z. Aydın, Ömmu Gülsüm Uzut","doi":"10.1109/CICN.2017.8319350","DOIUrl":null,"url":null,"abstract":"Protein secondary structure prediction is an important step in estimating the three dimensional structure of proteins. Among the many methods developed for predicting structural properties of proteins, hybrid classifiers and ensembles that combine predictions from several models are shown to improve the accuracy rates. In this paper, we train, optimize and combine a support vector machine, a deep convolutional neural field and a random forest in the second stage of a hybrid classifier for protein secondary structure prediction. We demonstrate that the overall accuracy of the proposed ensemble is comparable to the success rates of the state-of-the-art methods in the most difficult prediction setting and combining the selected models have the potential to further improve the accuracy of the base learners.","PeriodicalId":339750,"journal":{"name":"2017 9th International Conference on Computational Intelligence and Communication Networks (CICN)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Combining classifiers for protein secondary structure prediction\",\"authors\":\"Z. Aydın, Ömmu Gülsüm Uzut\",\"doi\":\"10.1109/CICN.2017.8319350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein secondary structure prediction is an important step in estimating the three dimensional structure of proteins. Among the many methods developed for predicting structural properties of proteins, hybrid classifiers and ensembles that combine predictions from several models are shown to improve the accuracy rates. In this paper, we train, optimize and combine a support vector machine, a deep convolutional neural field and a random forest in the second stage of a hybrid classifier for protein secondary structure prediction. We demonstrate that the overall accuracy of the proposed ensemble is comparable to the success rates of the state-of-the-art methods in the most difficult prediction setting and combining the selected models have the potential to further improve the accuracy of the base learners.\",\"PeriodicalId\":339750,\"journal\":{\"name\":\"2017 9th International Conference on Computational Intelligence and Communication Networks (CICN)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 9th International Conference on Computational Intelligence and Communication Networks (CICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICN.2017.8319350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 9th International Conference on Computational Intelligence and Communication Networks (CICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN.2017.8319350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

蛋白质二级结构预测是估计蛋白质三维结构的重要步骤。在许多用于预测蛋白质结构特性的方法中,混合分类器和组合来自多个模型的预测的集成被证明可以提高准确率。在蛋白质二级结构预测的混合分类器的第二阶段,我们训练、优化和组合了支持向量机、深度卷积神经场和随机森林。我们证明,在最困难的预测设置中,所提出的集成的总体准确性与最先进方法的成功率相当,并且组合所选模型具有进一步提高基础学习器准确性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining classifiers for protein secondary structure prediction
Protein secondary structure prediction is an important step in estimating the three dimensional structure of proteins. Among the many methods developed for predicting structural properties of proteins, hybrid classifiers and ensembles that combine predictions from several models are shown to improve the accuracy rates. In this paper, we train, optimize and combine a support vector machine, a deep convolutional neural field and a random forest in the second stage of a hybrid classifier for protein secondary structure prediction. We demonstrate that the overall accuracy of the proposed ensemble is comparable to the success rates of the state-of-the-art methods in the most difficult prediction setting and combining the selected models have the potential to further improve the accuracy of the base learners.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compact dual band printed planar inverted-F antenna for wireless communications Implementing Diffie-Hellman key exchange method on logical key hierarchy for secure broadcast transmission Data analytics using cloud computing Feature selection for protein dihedral angle prediction Facial expression recognition using enhanced local binary patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1