利用关联规则挖掘大学生数据的有意义模式

H. Yuliansyah, Hafsah, I. Arfiani, R. Umar
{"title":"利用关联规则挖掘大学生数据的有意义模式","authors":"H. Yuliansyah, Hafsah, I. Arfiani, R. Umar","doi":"10.2991/adics-es-19.2019.4","DOIUrl":null,"url":null,"abstract":"Association rules mining is a technique in data mining to discovering a meaningful pattern of data. The main objective of this research is to identify undergraduate students data and to get the profile and insight from the past data. It will have a benefit for improvement in academic activity in the future. This research has two phases. The first phase is preprocessing data, and the second phase is analyzing and measurement data using the Apriori Algorithms. The data preprocessing stage is done by cleaning data from noise and transforming data into the specified parameters. We use four feature/variable data, namely length of study duration, length of thesis duration, and Grade Point Average (GPA), and English proficiency score. The results of this research are variables of English proficiency score, Grade Point Average (GPA), and length of study duration having relations in student data. Keywords—data mining, association rules mining, apriori algorithms, frequent itemsets mining, student undergraduate data, knowledge discovery, data patterns","PeriodicalId":163074,"journal":{"name":"Proceedings of the 2019 Ahmad Dahlan International Conference Series on Engineering and Science (ADICS-ES 2019)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Discovering Meaningful Pattern of Undergraduate Students Data using Association Rules Mining\",\"authors\":\"H. Yuliansyah, Hafsah, I. Arfiani, R. Umar\",\"doi\":\"10.2991/adics-es-19.2019.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Association rules mining is a technique in data mining to discovering a meaningful pattern of data. The main objective of this research is to identify undergraduate students data and to get the profile and insight from the past data. It will have a benefit for improvement in academic activity in the future. This research has two phases. The first phase is preprocessing data, and the second phase is analyzing and measurement data using the Apriori Algorithms. The data preprocessing stage is done by cleaning data from noise and transforming data into the specified parameters. We use four feature/variable data, namely length of study duration, length of thesis duration, and Grade Point Average (GPA), and English proficiency score. The results of this research are variables of English proficiency score, Grade Point Average (GPA), and length of study duration having relations in student data. Keywords—data mining, association rules mining, apriori algorithms, frequent itemsets mining, student undergraduate data, knowledge discovery, data patterns\",\"PeriodicalId\":163074,\"journal\":{\"name\":\"Proceedings of the 2019 Ahmad Dahlan International Conference Series on Engineering and Science (ADICS-ES 2019)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 Ahmad Dahlan International Conference Series on Engineering and Science (ADICS-ES 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/adics-es-19.2019.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 Ahmad Dahlan International Conference Series on Engineering and Science (ADICS-ES 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/adics-es-19.2019.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

关联规则挖掘是数据挖掘中的一种发现有意义的数据模式的技术。本研究的主要目的是识别本科生数据,并从过去的数据中获得概况和见解。这对今后的学术活动有很大的帮助。本研究分为两个阶段。第一阶段是对数据进行预处理,第二阶段是使用Apriori算法对数据进行分析和测量。数据预处理阶段是通过清除数据中的噪声并将数据转换为指定参数来完成的。我们使用了四个特征/变量数据,即学习时长、论文时长、平均绩点(GPA)和英语水平分数。本研究的结果是英语水平分数、平均绩点(GPA)和学习时间长短在学生数据中的关系。关键词:数据挖掘,关联规则挖掘,先验算法,频繁项集挖掘,大学生数据,知识发现,数据模式
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering Meaningful Pattern of Undergraduate Students Data using Association Rules Mining
Association rules mining is a technique in data mining to discovering a meaningful pattern of data. The main objective of this research is to identify undergraduate students data and to get the profile and insight from the past data. It will have a benefit for improvement in academic activity in the future. This research has two phases. The first phase is preprocessing data, and the second phase is analyzing and measurement data using the Apriori Algorithms. The data preprocessing stage is done by cleaning data from noise and transforming data into the specified parameters. We use four feature/variable data, namely length of study duration, length of thesis duration, and Grade Point Average (GPA), and English proficiency score. The results of this research are variables of English proficiency score, Grade Point Average (GPA), and length of study duration having relations in student data. Keywords—data mining, association rules mining, apriori algorithms, frequent itemsets mining, student undergraduate data, knowledge discovery, data patterns
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Trashcan Design Using Quality Function Deployment (QFD) Method For The Campus Garbage Separation Pyrolysis of Ethylene Vynyl Acetate Polymer by Natural Zeolite Catalyst as an Alternative Fuel LSTM Based Prediction of Total Dissolved Solids in Hydroponic System Process Design Study of Methyl Tertiary-Butyl Ether Production Using Reactive Distillation Discovering Meaningful Pattern of Undergraduate Students Data using Association Rules Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1