对成本敏感的实时反馈控制应用的嵌入式软件容错部署

C. Pinello, L. Carloni, A. Sangiovanni-Vincentelli
{"title":"对成本敏感的实时反馈控制应用的嵌入式软件容错部署","authors":"C. Pinello, L. Carloni, A. Sangiovanni-Vincentelli","doi":"10.1109/DATE.2004.1269049","DOIUrl":null,"url":null,"abstract":"Designing cost-sensitive real-time control systems for safety-critical applications requires a careful analysis of the cost/coverage trade-offs of fault-tolerant solutions. This further complicates the difficult task of deploying the embedded software that implements the control algorithms on the execution platform that is often distributed around the plant (as it is typical, for instance, in automotive applications). We propose a synthesis-based design methodology that relieves the designers from the burden of specifying detailed mechanisms for addressing platform faults, while involving them in the definition of the overall fault-tolerance strategy. Thus, they can focus on addressing plant faults within their control algorithms, selecting the best components for the execution platform, and defining an accurate fault model. Our approach is centered on a new model of computation, fault tolerant data flows (FTDF), that enables the integration of formal validation techniques.","PeriodicalId":335658,"journal":{"name":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":"{\"title\":\"Fault-tolerant deployment of embedded software for cost-sensitive real-time feedback-control applications\",\"authors\":\"C. Pinello, L. Carloni, A. Sangiovanni-Vincentelli\",\"doi\":\"10.1109/DATE.2004.1269049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing cost-sensitive real-time control systems for safety-critical applications requires a careful analysis of the cost/coverage trade-offs of fault-tolerant solutions. This further complicates the difficult task of deploying the embedded software that implements the control algorithms on the execution platform that is often distributed around the plant (as it is typical, for instance, in automotive applications). We propose a synthesis-based design methodology that relieves the designers from the burden of specifying detailed mechanisms for addressing platform faults, while involving them in the definition of the overall fault-tolerance strategy. Thus, they can focus on addressing plant faults within their control algorithms, selecting the best components for the execution platform, and defining an accurate fault model. Our approach is centered on a new model of computation, fault tolerant data flows (FTDF), that enables the integration of formal validation techniques.\",\"PeriodicalId\":335658,\"journal\":{\"name\":\"Proceedings Design, Automation and Test in Europe Conference and Exhibition\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"80\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Design, Automation and Test in Europe Conference and Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2004.1269049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2004.1269049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

摘要

为安全关键型应用设计成本敏感型实时控制系统需要仔细分析容错解决方案的成本/覆盖权衡。这进一步使部署嵌入式软件的困难任务变得复杂,嵌入式软件在执行平台上实现控制算法,这些执行平台通常分布在工厂周围(例如,在汽车应用程序中很典型)。我们提出了一种基于综合的设计方法,该方法减轻了设计人员指定解决平台故障的详细机制的负担,同时使他们参与到总体容错策略的定义中。因此,他们可以专注于解决控制算法中的工厂故障,为执行平台选择最佳组件,并定义准确的故障模型。我们的方法以一种新的计算模型为中心,即容错数据流(FTDF),它可以集成正式验证技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault-tolerant deployment of embedded software for cost-sensitive real-time feedback-control applications
Designing cost-sensitive real-time control systems for safety-critical applications requires a careful analysis of the cost/coverage trade-offs of fault-tolerant solutions. This further complicates the difficult task of deploying the embedded software that implements the control algorithms on the execution platform that is often distributed around the plant (as it is typical, for instance, in automotive applications). We propose a synthesis-based design methodology that relieves the designers from the burden of specifying detailed mechanisms for addressing platform faults, while involving them in the definition of the overall fault-tolerance strategy. Thus, they can focus on addressing plant faults within their control algorithms, selecting the best components for the execution platform, and defining an accurate fault model. Our approach is centered on a new model of computation, fault tolerant data flows (FTDF), that enables the integration of formal validation techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RTL power optimisation: concepts, tools and design experiences [Tutorial] Reliable design: a system perspective [Tutorial] Evaluation of a refinement-driven systemC/spl trade/-based design flow The coming of age of reconfigurable computing-potentials and challenges of a new technology [Tutorial] Breaking the synchronous barrier for systems-on-chip communication and synchronisation [Tutorial]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1