基于多全向摄像机的连续人体跟踪与姿态估计

Shunsuke Akama, Akihiro Matsufuji, E. Sato-Shimokawara, Shoji Yamamoto, Toru Yamaguchi
{"title":"基于多全向摄像机的连续人体跟踪与姿态估计","authors":"Shunsuke Akama, Akihiro Matsufuji, E. Sato-Shimokawara, Shoji Yamamoto, Toru Yamaguchi","doi":"10.1109/TAAI.2018.00019","DOIUrl":null,"url":null,"abstract":"We propose a successive method for human tracking and posture estimation by using multiple omnidirectional cameras appropriate for Machine Learning method. A stable estimation for foot and head position is executed by the combination analysis with particle filter processing. Moreover, a classification method is accomplished by using the constraint of the connected line between head and foot position. The combination both this constraint and relative height from head to foot is possible to distinguish typical four postures for human activities in an indoor scene. We believe that this continuity of each data helps smooth convergence to the time-sequential learning for the discrimination between normal and abnormal behavior.","PeriodicalId":211734,"journal":{"name":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Successive Human Tracking and Posture Estimation with Multiple Omnidirectional Cameras\",\"authors\":\"Shunsuke Akama, Akihiro Matsufuji, E. Sato-Shimokawara, Shoji Yamamoto, Toru Yamaguchi\",\"doi\":\"10.1109/TAAI.2018.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a successive method for human tracking and posture estimation by using multiple omnidirectional cameras appropriate for Machine Learning method. A stable estimation for foot and head position is executed by the combination analysis with particle filter processing. Moreover, a classification method is accomplished by using the constraint of the connected line between head and foot position. The combination both this constraint and relative height from head to foot is possible to distinguish typical four postures for human activities in an indoor scene. We believe that this continuity of each data helps smooth convergence to the time-sequential learning for the discrimination between normal and abnormal behavior.\",\"PeriodicalId\":211734,\"journal\":{\"name\":\"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAAI.2018.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI.2018.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种使用适合机器学习方法的多个全向相机进行人体跟踪和姿态估计的连续方法。采用粒子滤波结合分析的方法,实现了足、头位置的稳定估计。此外,利用头足位置连线约束实现了一种分类方法。结合这一约束和从头到脚的相对高度,可以区分室内场景中人类活动的四种典型姿势。我们认为,每个数据的这种连续性有助于平滑收敛到时间序列学习,以区分正常和异常行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Successive Human Tracking and Posture Estimation with Multiple Omnidirectional Cameras
We propose a successive method for human tracking and posture estimation by using multiple omnidirectional cameras appropriate for Machine Learning method. A stable estimation for foot and head position is executed by the combination analysis with particle filter processing. Moreover, a classification method is accomplished by using the constraint of the connected line between head and foot position. The combination both this constraint and relative height from head to foot is possible to distinguish typical four postures for human activities in an indoor scene. We believe that this continuity of each data helps smooth convergence to the time-sequential learning for the discrimination between normal and abnormal behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ant Colony Optimization with Negative Feedback for Solving Constraint Satisfaction Problems Using Machine Learning Algorithms in Medication for Cardiac Arrest Early Warning System Construction and Forecasting Using AHP to Choose the Best Logistics Distribution Model A Vector Mosquitoes Classification System Based on Edge Computing and Deep Learning Deep Recurrent Q-Network with Truncated History
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1