电流过载后太阳能电池阵列硅光伏电池特性的变化

A. Ivanchenko, A. Tonkoshkur
{"title":"电流过载后太阳能电池阵列硅光伏电池特性的变化","authors":"A. Ivanchenko, A. Tonkoshkur","doi":"10.15222/tkea2019.3-4.19","DOIUrl":null,"url":null,"abstract":"Recently, much attention has been paid to the study of the influence of current overloads and local overheating on the degradation of the electrical characteristics of the photovoltaic components of solar arrays. First of all, it is connected with the tasks of increasing the reliability and durability of the operation of such renewable sources of electrical energy. Such studies are of particular interest due to the recent emergence of new methods and devices for improving the reliability of solar arrays by isolating inactive (defective or shaded) areas of their photovoltaic components (photovoltaic cells and photovoltaic modules).\nThis paper presents the research results on the influence of current overloads on the current-voltage and volt-watt characteristics and the electrical parameters of photovoltaic cells of solar arrays based on monocrystalline silicon.\nThe testing was performed using the cyclic current overload mode, which is the flow of electric breakdown current passed through the back-turned diode of a photovoltaic cell for several seconds. After that, the photovoltaic cell was cooled to room temperature, and then its current-voltage and volt-watt characteristics were measured.\nThe degradation (decrease) of all the basic electrical parameters of photovoltaic cells (open-circuit voltage, short-circuit current, filling factor of the current-voltage characteristic, and maximum power) has been established. The additive nature of the changes and the average relative decrease of the indicated electrical parameters for one breakdown cycle are determined. Comparison of the response time range of the PolySwitch fuses with the breakdown durations of photovoltaic cells is performed. The conclusion is drawn about the prospect of using such resettable fuses as protection in emergency situations that are associated with current overloads in solar arrays.","PeriodicalId":231412,"journal":{"name":"Технология и конструирование в электронной аппаратуре","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in the characteristics of silicon photovoltaic cells of solar arrays after current overloads\",\"authors\":\"A. Ivanchenko, A. Tonkoshkur\",\"doi\":\"10.15222/tkea2019.3-4.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, much attention has been paid to the study of the influence of current overloads and local overheating on the degradation of the electrical characteristics of the photovoltaic components of solar arrays. First of all, it is connected with the tasks of increasing the reliability and durability of the operation of such renewable sources of electrical energy. Such studies are of particular interest due to the recent emergence of new methods and devices for improving the reliability of solar arrays by isolating inactive (defective or shaded) areas of their photovoltaic components (photovoltaic cells and photovoltaic modules).\\nThis paper presents the research results on the influence of current overloads on the current-voltage and volt-watt characteristics and the electrical parameters of photovoltaic cells of solar arrays based on monocrystalline silicon.\\nThe testing was performed using the cyclic current overload mode, which is the flow of electric breakdown current passed through the back-turned diode of a photovoltaic cell for several seconds. After that, the photovoltaic cell was cooled to room temperature, and then its current-voltage and volt-watt characteristics were measured.\\nThe degradation (decrease) of all the basic electrical parameters of photovoltaic cells (open-circuit voltage, short-circuit current, filling factor of the current-voltage characteristic, and maximum power) has been established. The additive nature of the changes and the average relative decrease of the indicated electrical parameters for one breakdown cycle are determined. Comparison of the response time range of the PolySwitch fuses with the breakdown durations of photovoltaic cells is performed. The conclusion is drawn about the prospect of using such resettable fuses as protection in emergency situations that are associated with current overloads in solar arrays.\",\"PeriodicalId\":231412,\"journal\":{\"name\":\"Технология и конструирование в электронной аппаратуре\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Технология и конструирование в электронной аппаратуре\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15222/tkea2019.3-4.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Технология и конструирование в электронной аппаратуре","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15222/tkea2019.3-4.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,研究电流过载和局部过热对太阳能电池阵光伏组件电气特性退化的影响受到了广泛的关注。首先,它与提高这种可再生电力能源运行的可靠性和耐久性的任务有关。由于最近出现了新的方法和设备,通过隔离其光伏组件(光伏电池和光伏模块)的非活动(缺陷或阴影)区域来提高太阳能电池阵列的可靠性,因此此类研究特别有趣。本文介绍了电流过载对单晶硅太阳能电池阵的电流-电压、伏特-瓦特性及电学参数影响的研究成果。测试采用循环电流过载模式,即击穿电流在几秒钟内通过光伏电池的反向二极管。之后,将光伏电池冷却至室温,然后测量其电流-电压和伏特-瓦特性。建立了光伏电池所有基本电学参数(开路电压、短路电流、流压特性填充因子、最大功率)的退化(减小)。确定了一个击穿周期的变化和指示电气参数的平均相对减少的加性。对多聚witch熔断器的响应时间范围与光伏电池击穿时间进行了比较。结论是,在与太阳能电池阵列电流过载有关的紧急情况下,使用这种可复位保险丝作为保护的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Changes in the characteristics of silicon photovoltaic cells of solar arrays after current overloads
Recently, much attention has been paid to the study of the influence of current overloads and local overheating on the degradation of the electrical characteristics of the photovoltaic components of solar arrays. First of all, it is connected with the tasks of increasing the reliability and durability of the operation of such renewable sources of electrical energy. Such studies are of particular interest due to the recent emergence of new methods and devices for improving the reliability of solar arrays by isolating inactive (defective or shaded) areas of their photovoltaic components (photovoltaic cells and photovoltaic modules). This paper presents the research results on the influence of current overloads on the current-voltage and volt-watt characteristics and the electrical parameters of photovoltaic cells of solar arrays based on monocrystalline silicon. The testing was performed using the cyclic current overload mode, which is the flow of electric breakdown current passed through the back-turned diode of a photovoltaic cell for several seconds. After that, the photovoltaic cell was cooled to room temperature, and then its current-voltage and volt-watt characteristics were measured. The degradation (decrease) of all the basic electrical parameters of photovoltaic cells (open-circuit voltage, short-circuit current, filling factor of the current-voltage characteristic, and maximum power) has been established. The additive nature of the changes and the average relative decrease of the indicated electrical parameters for one breakdown cycle are determined. Comparison of the response time range of the PolySwitch fuses with the breakdown durations of photovoltaic cells is performed. The conclusion is drawn about the prospect of using such resettable fuses as protection in emergency situations that are associated with current overloads in solar arrays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Changes in the characteristics of silicon photovoltaic cells of solar arrays after current overloads Electrical conductivity of thermosensitive glass-ceramics based on nanosized vanadium dioxide Resistive humidity sensors based on nanocellulose films for biodegradable electronics Synchronization of pulsed and continuous-wave IMPATT oscillators in the millimeter wavelength range. Part 2. Stabilizing microwave parameters of synchronized generators Matrix calculation of correlation characteristics based on spectral methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1