{"title":"结构化稀疏三元权重编码的深度神经网络的高效硬件实现","authors":"Yoonho Boo, Wonyong Sung","doi":"10.1109/SiPS.2017.8110021","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNNs) usually demand a large amount of operations for real-time inference. Especially, fully-connected layers contain a large number of weights, thus they usually need many off-chip memory accesses for inference. We propose a weight compression method for deep neural networks, which allows values of +1 or −1 only at predetermined positions of the weights so that decoding using a table can be conducted easily. For example, the structured sparse (8,2) coding allows at most two non-zero values among eight weights. This method not only enables multiplication-free DNN implementations but also compresses the weight storage by up to x32 compared to floating-point networks. Weight distribution normalization and gradual pruning techniques are applied to mitigate the performance degradation. The experiments are conducted with fully-connected deep neural networks and convolutional neural networks.","PeriodicalId":251688,"journal":{"name":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Structured sparse ternary weight coding of deep neural networks for efficient hardware implementations\",\"authors\":\"Yoonho Boo, Wonyong Sung\",\"doi\":\"10.1109/SiPS.2017.8110021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks (DNNs) usually demand a large amount of operations for real-time inference. Especially, fully-connected layers contain a large number of weights, thus they usually need many off-chip memory accesses for inference. We propose a weight compression method for deep neural networks, which allows values of +1 or −1 only at predetermined positions of the weights so that decoding using a table can be conducted easily. For example, the structured sparse (8,2) coding allows at most two non-zero values among eight weights. This method not only enables multiplication-free DNN implementations but also compresses the weight storage by up to x32 compared to floating-point networks. Weight distribution normalization and gradual pruning techniques are applied to mitigate the performance degradation. The experiments are conducted with fully-connected deep neural networks and convolutional neural networks.\",\"PeriodicalId\":251688,\"journal\":{\"name\":\"2017 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS.2017.8110021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2017.8110021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structured sparse ternary weight coding of deep neural networks for efficient hardware implementations
Deep neural networks (DNNs) usually demand a large amount of operations for real-time inference. Especially, fully-connected layers contain a large number of weights, thus they usually need many off-chip memory accesses for inference. We propose a weight compression method for deep neural networks, which allows values of +1 or −1 only at predetermined positions of the weights so that decoding using a table can be conducted easily. For example, the structured sparse (8,2) coding allows at most two non-zero values among eight weights. This method not only enables multiplication-free DNN implementations but also compresses the weight storage by up to x32 compared to floating-point networks. Weight distribution normalization and gradual pruning techniques are applied to mitigate the performance degradation. The experiments are conducted with fully-connected deep neural networks and convolutional neural networks.