为什么要建立三维遥感测量模型?大气、地形、大景观、叶绿素荧光和卫星影像反演的最新进展

J. Gastellu-Etchegorry, Y. Wang, O. Regaieg, T. Yin, Z. Malenovský, Z. Zhen, X. Yang, Z. Tao, L. Landier, A. Al Bitar, Deschamps, N. Lauret, J. Guilleux, E. Chavanon, B. Cao, J. Qi, A. Kallel, Z. Mitraka, N. Chrysoulakis, B. Cook, D. Morton
{"title":"为什么要建立三维遥感测量模型?大气、地形、大景观、叶绿素荧光和卫星影像反演的最新进展","authors":"J. Gastellu-Etchegorry, Y. Wang, O. Regaieg, T. Yin, Z. Malenovský, Z. Zhen, X. Yang, Z. Tao, L. Landier, A. Al Bitar, Deschamps, N. Lauret, J. Guilleux, E. Chavanon, B. Cao, J. Qi, A. Kallel, Z. Mitraka, N. Chrysoulakis, B. Cook, D. Morton","doi":"10.1109/ATSIP49331.2020.9231884","DOIUrl":null,"url":null,"abstract":"Remote sensing (RS) dedicated to the study of land surfaces benefits from more and more advanced sensors. However, the interpretation of RS data is often is often inaccurate due to the complexity of the observed land surfaces. Therefore, RS models, in particular physical models, that simulate RS observations of the three-dimensional (3D) landscapes are critical to correctly interpret RS data. DART is one of the most comprehensive 3D models of Earthatmosphere optical radiative transfer (RT), from ultraviolet (UV) to thermal infrared (TIR). It simulates the optical signal of proximal, aerial and satellite imaging spectrometers and laser scanners, the 3D RB and solar-induced chlorophyll fluorescence (SIF) signal, for any urban or natural landscape and any experimental or instrument configuration. It is freely available for research and teaching activities (dart.omp.eu). After illustrating three significant sources of inaccuracy in RS interpretation, five recent DART advances are presented: RT in the atmosphere and topography, fast RS image simulation of large landscapes, SIF modelling, and satellite image inversion.","PeriodicalId":384018,"journal":{"name":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Why To Model Remote Sensing Measurements In 3d? Recent Advances In Dart: Atmosphere, Topography, Large Landscape, Chlorophyll Fluorescence And Satellite Image Inversion\",\"authors\":\"J. Gastellu-Etchegorry, Y. Wang, O. Regaieg, T. Yin, Z. Malenovský, Z. Zhen, X. Yang, Z. Tao, L. Landier, A. Al Bitar, Deschamps, N. Lauret, J. Guilleux, E. Chavanon, B. Cao, J. Qi, A. Kallel, Z. Mitraka, N. Chrysoulakis, B. Cook, D. Morton\",\"doi\":\"10.1109/ATSIP49331.2020.9231884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote sensing (RS) dedicated to the study of land surfaces benefits from more and more advanced sensors. However, the interpretation of RS data is often is often inaccurate due to the complexity of the observed land surfaces. Therefore, RS models, in particular physical models, that simulate RS observations of the three-dimensional (3D) landscapes are critical to correctly interpret RS data. DART is one of the most comprehensive 3D models of Earthatmosphere optical radiative transfer (RT), from ultraviolet (UV) to thermal infrared (TIR). It simulates the optical signal of proximal, aerial and satellite imaging spectrometers and laser scanners, the 3D RB and solar-induced chlorophyll fluorescence (SIF) signal, for any urban or natural landscape and any experimental or instrument configuration. It is freely available for research and teaching activities (dart.omp.eu). After illustrating three significant sources of inaccuracy in RS interpretation, five recent DART advances are presented: RT in the atmosphere and topography, fast RS image simulation of large landscapes, SIF modelling, and satellite image inversion.\",\"PeriodicalId\":384018,\"journal\":{\"name\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP49331.2020.9231884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP49331.2020.9231884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

致力于陆地表面研究的遥感(RS)得益于越来越多的先进传感器。然而,由于观测地表的复杂性,对遥感数据的解释往往不准确。因此,模拟三维(3D)景观的遥感观测数据的遥感模型,特别是物理模型,对于正确解释遥感数据至关重要。DART是地球大气光学辐射传输(RT)的最全面的三维模型之一,从紫外线(UV)到热红外(TIR)。它模拟近地、空中和卫星成像光谱仪和激光扫描仪的光学信号、3D RB和太阳诱导的叶绿素荧光(SIF)信号,用于任何城市或自然景观以及任何实验或仪器配置。它可以免费用于研究和教学活动(part . comp .eu)。在阐述了RS解译中三个重要的不准确来源之后,介绍了DART的五个最新进展:大气和地形的RT,大型景观的快速RS图像模拟,SIF建模和卫星图像反演。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Why To Model Remote Sensing Measurements In 3d? Recent Advances In Dart: Atmosphere, Topography, Large Landscape, Chlorophyll Fluorescence And Satellite Image Inversion
Remote sensing (RS) dedicated to the study of land surfaces benefits from more and more advanced sensors. However, the interpretation of RS data is often is often inaccurate due to the complexity of the observed land surfaces. Therefore, RS models, in particular physical models, that simulate RS observations of the three-dimensional (3D) landscapes are critical to correctly interpret RS data. DART is one of the most comprehensive 3D models of Earthatmosphere optical radiative transfer (RT), from ultraviolet (UV) to thermal infrared (TIR). It simulates the optical signal of proximal, aerial and satellite imaging spectrometers and laser scanners, the 3D RB and solar-induced chlorophyll fluorescence (SIF) signal, for any urban or natural landscape and any experimental or instrument configuration. It is freely available for research and teaching activities (dart.omp.eu). After illustrating three significant sources of inaccuracy in RS interpretation, five recent DART advances are presented: RT in the atmosphere and topography, fast RS image simulation of large landscapes, SIF modelling, and satellite image inversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Recognition of Epileptiform EEG Abnormalities Using Machine Learning Approaches Generation of fuzzy evidence numbers for the evaluation of uncertainty measures Speckle Denoising of the Multipolarization Images by Hybrid Filters Identification of the user by using a hardware device Lightweight Hardware Architectures for the Piccolo Block Cipher in FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1