遮挡场景下人体识别的多步态数据集

J. Singh, Sakshi Arora, Sanjeev Jain, Uday Pratap Singh SoM
{"title":"遮挡场景下人体识别的多步态数据集","authors":"J. Singh, Sakshi Arora, Sanjeev Jain, Uday Pratap Singh SoM","doi":"10.1109/ICICT46931.2019.8977673","DOIUrl":null,"url":null,"abstract":"Biometric gait has found importance in recognition, security, behavior learning and also in clinical analysis. From a few decades research on gait recognition and dataset available publically focused on a single moving person. But in real time applications (such as shopping malls, railway stations, airport parking, etc.) where people walk in a group and occlusion issue affects the gait recognition performance. Considering this issue, we constructed a new database which focused on Multi-Gait (dynamic) occlusion situation. The dataset is classified into two categories i.e. first, Multi-Gait (MG), subjects walk in a group, and second, Single-Gait (SG), same subjects walk alone. Therefore, the dataset included both occluded and non-occluded gait patterns. The objective of this dataset is to analyze gait pattern variations when a person walks in a group or the same person walk separately. This dataset is also useful for researchers for identification of SG to MG.","PeriodicalId":412668,"journal":{"name":"2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)","volume":"273 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Multi-Gait Dataset for Human Recognition under Occlusion Scenario\",\"authors\":\"J. Singh, Sakshi Arora, Sanjeev Jain, Uday Pratap Singh SoM\",\"doi\":\"10.1109/ICICT46931.2019.8977673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biometric gait has found importance in recognition, security, behavior learning and also in clinical analysis. From a few decades research on gait recognition and dataset available publically focused on a single moving person. But in real time applications (such as shopping malls, railway stations, airport parking, etc.) where people walk in a group and occlusion issue affects the gait recognition performance. Considering this issue, we constructed a new database which focused on Multi-Gait (dynamic) occlusion situation. The dataset is classified into two categories i.e. first, Multi-Gait (MG), subjects walk in a group, and second, Single-Gait (SG), same subjects walk alone. Therefore, the dataset included both occluded and non-occluded gait patterns. The objective of this dataset is to analyze gait pattern variations when a person walks in a group or the same person walk separately. This dataset is also useful for researchers for identification of SG to MG.\",\"PeriodicalId\":412668,\"journal\":{\"name\":\"2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)\",\"volume\":\"273 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT46931.2019.8977673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT46931.2019.8977673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

生物识别步态在识别、安全、行为学习和临床分析方面具有重要意义。几十年来对步态识别的研究和公开的数据集主要集中在单个移动的人身上。但在实时应用中(如商场、火车站、机场停车场等),人们成群结队地行走,遮挡问题会影响步态识别的性能。考虑到这一问题,我们构建了一个新的多步态(动态)遮挡数据库。数据集分为两类,第一种是多步态(MG),受试者在一组中行走,第二种是单步态(SG),相同的受试者单独行走。因此,数据集包括闭塞和非闭塞的步态模式。该数据集的目的是分析一个人在一群人中行走或同一个人单独行走时的步态模式变化。该数据集对研究人员识别SG到MG也很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multi-Gait Dataset for Human Recognition under Occlusion Scenario
Biometric gait has found importance in recognition, security, behavior learning and also in clinical analysis. From a few decades research on gait recognition and dataset available publically focused on a single moving person. But in real time applications (such as shopping malls, railway stations, airport parking, etc.) where people walk in a group and occlusion issue affects the gait recognition performance. Considering this issue, we constructed a new database which focused on Multi-Gait (dynamic) occlusion situation. The dataset is classified into two categories i.e. first, Multi-Gait (MG), subjects walk in a group, and second, Single-Gait (SG), same subjects walk alone. Therefore, the dataset included both occluded and non-occluded gait patterns. The objective of this dataset is to analyze gait pattern variations when a person walks in a group or the same person walk separately. This dataset is also useful for researchers for identification of SG to MG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fraud Detection During Money Transaction and Prevention Stockwell Transform Based Algorithm for Processing of Digital Communication Signals to Detect Superimposed Noise Disturbances Exploration of Deep Learning Techniques in Big Data Analytics Acquiring and Analyzing Movement Detection through Image Granulation Handling Structured Data Using Data Mining Clustering Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1