支持向量机与模糊集理论在不完全调查数据分类中的应用

Chao Lu, Xue-wei Li, Hong-Bo Pan
{"title":"支持向量机与模糊集理论在不完全调查数据分类中的应用","authors":"Chao Lu, Xue-wei Li, Hong-Bo Pan","doi":"10.1109/ICSSSM.2007.4280164","DOIUrl":null,"url":null,"abstract":"Classification with incomplete survey data is a new subject, and also which is an important theme in data mining. This paper proposes a novel, powerful classification machine, support vector machine (SVM) based model of classification for incomplete survey data. Using this model, an incomplete survey data is translated to fuzzy patterns without missing values firstly, and then used these fuzzy patterns as the exemplar set for teaching the support vector machine. Experimental results from the real-world data verify the effectiveness and applicability of the proposed model. Compared with other classification techniques, the method can utilize more information provided by the data, and reveal the risk of the classification result.","PeriodicalId":153603,"journal":{"name":"2007 International Conference on Service Systems and Service Management","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Application of SVM and Fuzzy Set Theory for Classifying with Incomplete Survey Data\",\"authors\":\"Chao Lu, Xue-wei Li, Hong-Bo Pan\",\"doi\":\"10.1109/ICSSSM.2007.4280164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification with incomplete survey data is a new subject, and also which is an important theme in data mining. This paper proposes a novel, powerful classification machine, support vector machine (SVM) based model of classification for incomplete survey data. Using this model, an incomplete survey data is translated to fuzzy patterns without missing values firstly, and then used these fuzzy patterns as the exemplar set for teaching the support vector machine. Experimental results from the real-world data verify the effectiveness and applicability of the proposed model. Compared with other classification techniques, the method can utilize more information provided by the data, and reveal the risk of the classification result.\",\"PeriodicalId\":153603,\"journal\":{\"name\":\"2007 International Conference on Service Systems and Service Management\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Service Systems and Service Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSSM.2007.4280164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Service Systems and Service Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSSM.2007.4280164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

不完全调查数据分类是一门新兴学科,也是数据挖掘领域的重要课题。本文提出了一种新的、功能强大的基于支持向量机(SVM)的不完全调查数据分类模型。利用该模型,首先将不完整的调查数据转化为没有缺失值的模糊模式,然后将这些模糊模式作为训练支持向量机的样本集。实际数据的实验结果验证了该模型的有效性和适用性。与其他分类技术相比,该方法可以利用数据提供的更多信息,并揭示分类结果的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of SVM and Fuzzy Set Theory for Classifying with Incomplete Survey Data
Classification with incomplete survey data is a new subject, and also which is an important theme in data mining. This paper proposes a novel, powerful classification machine, support vector machine (SVM) based model of classification for incomplete survey data. Using this model, an incomplete survey data is translated to fuzzy patterns without missing values firstly, and then used these fuzzy patterns as the exemplar set for teaching the support vector machine. Experimental results from the real-world data verify the effectiveness and applicability of the proposed model. Compared with other classification techniques, the method can utilize more information provided by the data, and reveal the risk of the classification result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Game Analysis about Utility Pricing of Power Plant Based on the Coordination between Power and Environment Collaborative Analysis on Modern Logistics and Finance The Relationship between Perceived Performance and Consumer Satisfaction: The Moderating Role of Price, Price Consciousness and Conspicuous Consumption The Impact of HRMIS on Enterprise Social Capital: a View from Social Network Research of Combinative Incentives of Manager based on Services Innovation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1