带有词和上下文嵌入的载体句选择

C. Y. Yeung, J. Lee, Benjamin Ka-Yin T'sou
{"title":"带有词和上下文嵌入的载体句选择","authors":"C. Y. Yeung, J. Lee, Benjamin Ka-Yin T'sou","doi":"10.1109/IALP48816.2019.9037727","DOIUrl":null,"url":null,"abstract":"This paper presents the first data-driven model for selecting carrier sentences with word and context embeddings. In computer-assisted language learning systems, fill-in-the-blank items help users review or learn new vocabulary. A crucial step in automatic generation of fill-in-the-blank items is the selection of carrier sentences that illustrate the usage and meaning of the target word. Previous approaches for carrier sentence selection have mostly relied on features related to sentence length, vocabulary difficulty and word association strength. We train a statistical classifier on a large-scale, automatically constructed corpus of sample carrier sentences for learning Chinese as a foreign language, and use it to predict the suitability of a candidate carrier sentence for a target word. Human evaluation shows that our approach leads to substantial improvement over a word co-occurrence heuristic, and that context embeddings further enhance selection performance.","PeriodicalId":208066,"journal":{"name":"2019 International Conference on Asian Language Processing (IALP)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carrier Sentence Selection with Word and Context Embeddings\",\"authors\":\"C. Y. Yeung, J. Lee, Benjamin Ka-Yin T'sou\",\"doi\":\"10.1109/IALP48816.2019.9037727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the first data-driven model for selecting carrier sentences with word and context embeddings. In computer-assisted language learning systems, fill-in-the-blank items help users review or learn new vocabulary. A crucial step in automatic generation of fill-in-the-blank items is the selection of carrier sentences that illustrate the usage and meaning of the target word. Previous approaches for carrier sentence selection have mostly relied on features related to sentence length, vocabulary difficulty and word association strength. We train a statistical classifier on a large-scale, automatically constructed corpus of sample carrier sentences for learning Chinese as a foreign language, and use it to predict the suitability of a candidate carrier sentence for a target word. Human evaluation shows that our approach leads to substantial improvement over a word co-occurrence heuristic, and that context embeddings further enhance selection performance.\",\"PeriodicalId\":208066,\"journal\":{\"name\":\"2019 International Conference on Asian Language Processing (IALP)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP48816.2019.9037727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP48816.2019.9037727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了第一个数据驱动模型,用于选择带有词和上下文嵌入的载体句。在计算机辅助语言学习系统中,填空项目可以帮助用户复习或学习新词汇。自动生成填空题的一个关键步骤是选择能够说明目标词的用法和含义的载体句。以往的载体句选择方法主要依赖于与句子长度、词汇难度和单词联想强度相关的特征。我们在一个大规模的、自动构建的用于对外汉语学习的样本载体句语料库上训练了一个统计分类器,并使用它来预测候选载体句对目标词的适用性。人类的评估表明,我们的方法比词共现启发式有了实质性的改进,并且上下文嵌入进一步提高了选择性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carrier Sentence Selection with Word and Context Embeddings
This paper presents the first data-driven model for selecting carrier sentences with word and context embeddings. In computer-assisted language learning systems, fill-in-the-blank items help users review or learn new vocabulary. A crucial step in automatic generation of fill-in-the-blank items is the selection of carrier sentences that illustrate the usage and meaning of the target word. Previous approaches for carrier sentence selection have mostly relied on features related to sentence length, vocabulary difficulty and word association strength. We train a statistical classifier on a large-scale, automatically constructed corpus of sample carrier sentences for learning Chinese as a foreign language, and use it to predict the suitability of a candidate carrier sentence for a target word. Human evaluation shows that our approach leads to substantial improvement over a word co-occurrence heuristic, and that context embeddings further enhance selection performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A General Procedure for Improving Language Models in Low-Resource Speech Recognition Automated Prediction of Item Difficulty in Reading Comprehension Using Long Short-Term Memory An Measurement Method of Ancient Poetry Difficulty for Adaptive Testing How to Answer Comparison Questions An Enhancement of Malay Social Media Text Normalization for Lexicon-Based Sentiment Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1