Mikel Landajuela, R. Anirudh, Joe Loscazo, R. Blake
{"title":"使用12导联心电图的心内电成像:一种使用合成数据的机器学习方法","authors":"Mikel Landajuela, R. Anirudh, Joe Loscazo, R. Blake","doi":"10.22489/CinC.2022.026","DOIUrl":null,"url":null,"abstract":"Current state-of-the-art techniques for non-invasive imaging of cardiac electrical phenomena require voltage recordings from dozens of different torso locations and anatomical models built from expensive medical diagnostic imaging procedures. This study aimed to assess if recent machine learning advances could alternatively reconstruct electroanatomical maps at clinically relevant resolutions using only the standard 12-lead electrocardiogram (ECG) as input. To that end, a computational study was conducted to generate a dataset of over 16000 detailed cardiac simulations, which was then used to train neural network (NN) architectures designed to exploit both spatial and temporal correlations in the ECG signal. Analysis over a validation set showed average errors in activation map reconstruction below 1.7 msec over 75 intracardiac locations. Furthermore, phenotypical patterns of activation and the morphology of the activation potential were correctly reconstructed. The approach offers opportunities to stratify patients non-invasively, both retrospectively and prospectively, using metrics otherwise only available through invasive clinical procedures.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intracardiac Electrical Imaging Using the 12-Lead ECG: A Machine Learning Approach Using Synthetic Data\",\"authors\":\"Mikel Landajuela, R. Anirudh, Joe Loscazo, R. Blake\",\"doi\":\"10.22489/CinC.2022.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current state-of-the-art techniques for non-invasive imaging of cardiac electrical phenomena require voltage recordings from dozens of different torso locations and anatomical models built from expensive medical diagnostic imaging procedures. This study aimed to assess if recent machine learning advances could alternatively reconstruct electroanatomical maps at clinically relevant resolutions using only the standard 12-lead electrocardiogram (ECG) as input. To that end, a computational study was conducted to generate a dataset of over 16000 detailed cardiac simulations, which was then used to train neural network (NN) architectures designed to exploit both spatial and temporal correlations in the ECG signal. Analysis over a validation set showed average errors in activation map reconstruction below 1.7 msec over 75 intracardiac locations. Furthermore, phenotypical patterns of activation and the morphology of the activation potential were correctly reconstructed. The approach offers opportunities to stratify patients non-invasively, both retrospectively and prospectively, using metrics otherwise only available through invasive clinical procedures.\",\"PeriodicalId\":117840,\"journal\":{\"name\":\"2022 Computing in Cardiology (CinC)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2022.026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intracardiac Electrical Imaging Using the 12-Lead ECG: A Machine Learning Approach Using Synthetic Data
Current state-of-the-art techniques for non-invasive imaging of cardiac electrical phenomena require voltage recordings from dozens of different torso locations and anatomical models built from expensive medical diagnostic imaging procedures. This study aimed to assess if recent machine learning advances could alternatively reconstruct electroanatomical maps at clinically relevant resolutions using only the standard 12-lead electrocardiogram (ECG) as input. To that end, a computational study was conducted to generate a dataset of over 16000 detailed cardiac simulations, which was then used to train neural network (NN) architectures designed to exploit both spatial and temporal correlations in the ECG signal. Analysis over a validation set showed average errors in activation map reconstruction below 1.7 msec over 75 intracardiac locations. Furthermore, phenotypical patterns of activation and the morphology of the activation potential were correctly reconstructed. The approach offers opportunities to stratify patients non-invasively, both retrospectively and prospectively, using metrics otherwise only available through invasive clinical procedures.