GRASP55和GRASP65的快速降解揭示了它们对高尔基结构的直接影响

Yijun Zhang, J. Seemann
{"title":"GRASP55和GRASP65的快速降解揭示了它们对高尔基结构的直接影响","authors":"Yijun Zhang, J. Seemann","doi":"10.1101/2020.07.07.192609","DOIUrl":null,"url":null,"abstract":"GRASP65 and GRASP55 have been implicated in stacking of Golgi cisternae and lateral linking of stacks within the Golgi ribbon. However, loss of gene function approaches by RNAi or gene knockout to dissect their respective roles often resulted in conflicting conclusions. Here, we gene-edited GRASP55 and/or GRASP65 with a degron tag in human fibroblasts, allowing for the induced rapid degradation by the proteasome. We show that acute depletion of either GRASP55 or GRASP65 does not affect the Golgi ribbon, while chronic degradation of GRASP55 disrupts lateral connectivity of the Golgi ribbon. Acute double depletion of both GRASPs coincides with the loss of the vesicle tethering proteins GM130, p115 and Golgin-45 from the Golgi and compromises ribbon linking. Furthermore, neither GRASP55 and/or GRASP65 are required for maintaining stacks or de novo assembly of stacked cisternae at the end of mitosis. These results demonstrate that both GRASPs are dispensable for Golgi stacking, but are involved in maintaining the integrity of Golgi ribbon together with GM130 and Golgin-45.","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Rapid degradation of GRASP55 and GRASP65 reveals their immediate impact on the Golgi structure\",\"authors\":\"Yijun Zhang, J. Seemann\",\"doi\":\"10.1101/2020.07.07.192609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GRASP65 and GRASP55 have been implicated in stacking of Golgi cisternae and lateral linking of stacks within the Golgi ribbon. However, loss of gene function approaches by RNAi or gene knockout to dissect their respective roles often resulted in conflicting conclusions. Here, we gene-edited GRASP55 and/or GRASP65 with a degron tag in human fibroblasts, allowing for the induced rapid degradation by the proteasome. We show that acute depletion of either GRASP55 or GRASP65 does not affect the Golgi ribbon, while chronic degradation of GRASP55 disrupts lateral connectivity of the Golgi ribbon. Acute double depletion of both GRASPs coincides with the loss of the vesicle tethering proteins GM130, p115 and Golgin-45 from the Golgi and compromises ribbon linking. Furthermore, neither GRASP55 and/or GRASP65 are required for maintaining stacks or de novo assembly of stacked cisternae at the end of mitosis. These results demonstrate that both GRASPs are dispensable for Golgi stacking, but are involved in maintaining the integrity of Golgi ribbon together with GM130 and Golgin-45.\",\"PeriodicalId\":343306,\"journal\":{\"name\":\"The Journal of Cell Biology\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2020.07.07.192609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2020.07.07.192609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

GRASP65和GRASP55与高尔基池的堆叠和高尔基带内堆叠的横向连接有关。然而,通过RNAi或基因敲除来剖析其各自作用的基因功能丧失方法往往导致相互矛盾的结论。在这里,我们在人成纤维细胞中对GRASP55和/或GRASP65进行了基因编辑,并带有降解标记,允许蛋白酶体诱导的快速降解。我们发现GRASP55或GRASP65的急性耗损不会影响高尔基带,而GRASP55的慢性降解会破坏高尔基带的横向连接。两种GRASPs的急性双重耗损与高尔基体中囊泡拴系蛋白GM130、p115和Golgin-45的丢失同时发生,并损害了带状连接。此外,GRASP55和/或GRASP65都不需要在有丝分裂结束时维持堆叠池或堆叠池的重新组装。这些结果表明,这两种GRASPs在高尔基堆积中是不可缺少的,但它们与GM130和Golgin-45一起参与维持高尔基带的完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid degradation of GRASP55 and GRASP65 reveals their immediate impact on the Golgi structure
GRASP65 and GRASP55 have been implicated in stacking of Golgi cisternae and lateral linking of stacks within the Golgi ribbon. However, loss of gene function approaches by RNAi or gene knockout to dissect their respective roles often resulted in conflicting conclusions. Here, we gene-edited GRASP55 and/or GRASP65 with a degron tag in human fibroblasts, allowing for the induced rapid degradation by the proteasome. We show that acute depletion of either GRASP55 or GRASP65 does not affect the Golgi ribbon, while chronic degradation of GRASP55 disrupts lateral connectivity of the Golgi ribbon. Acute double depletion of both GRASPs coincides with the loss of the vesicle tethering proteins GM130, p115 and Golgin-45 from the Golgi and compromises ribbon linking. Furthermore, neither GRASP55 and/or GRASP65 are required for maintaining stacks or de novo assembly of stacked cisternae at the end of mitosis. These results demonstrate that both GRASPs are dispensable for Golgi stacking, but are involved in maintaining the integrity of Golgi ribbon together with GM130 and Golgin-45.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UBAP2L ensures homeostasis of nuclear pore complexes at the intact nuclear envelope BRG1 programs PRC2-complex repression and controls oligodendrocyte differentiation and remyelination. Unveiling the TRAPP: The role of plant TRAPPII in adaptive growth decisions. Calcium ions promote migrasome formation via Synaptotagmin-1. Determinants of minor satellite RNA function in chromosome segregation in mouse embryonic stem cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1