随机非线性和缺失测量时变系统的事件触发弹性滤波

Ming Gao, Jun Hu, Hongxu Zhang
{"title":"随机非线性和缺失测量时变系统的事件触发弹性滤波","authors":"Ming Gao, Jun Hu, Hongxu Zhang","doi":"10.1109/CCDC.2018.8407936","DOIUrl":null,"url":null,"abstract":"This paper studies the event-triggered resilient filtering problem for a class of nonlinear systems with randomly occurring nonlinearity and missing measurements. Both the phenomena of the randomly occurring nonlinearity and the missing measurements are described by Bernoulli distributed random variables, where the occurrence probabilities could be uncertain. The event-triggered communication mechanism is introduced to save the network bandwidth during the data transmissions through the network. Additionally, the filter gain perturbations are characterized by employing the norm bounded uncertainties. The aim of the paper is to develop a robust event-triggered resilient filtering algorithm against the randomly occurring nonlinearity and missing measurements. Note that the analytical expressions of the filtering error covariance cannot be computed directly. Consequently, we derive its upper bound as an alternative way and subsequently minimize such an upper bound by properly designing the filter gain at each time step. Finally, an illustrative example is presented to show the effectiveness of the provided filtering algorithm.","PeriodicalId":409960,"journal":{"name":"2018 Chinese Control And Decision Conference (CCDC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-triggered Resilient Filtering for Time-varying Systems with Randomly Occurring Nonlinearity and Missing Measurements\",\"authors\":\"Ming Gao, Jun Hu, Hongxu Zhang\",\"doi\":\"10.1109/CCDC.2018.8407936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the event-triggered resilient filtering problem for a class of nonlinear systems with randomly occurring nonlinearity and missing measurements. Both the phenomena of the randomly occurring nonlinearity and the missing measurements are described by Bernoulli distributed random variables, where the occurrence probabilities could be uncertain. The event-triggered communication mechanism is introduced to save the network bandwidth during the data transmissions through the network. Additionally, the filter gain perturbations are characterized by employing the norm bounded uncertainties. The aim of the paper is to develop a robust event-triggered resilient filtering algorithm against the randomly occurring nonlinearity and missing measurements. Note that the analytical expressions of the filtering error covariance cannot be computed directly. Consequently, we derive its upper bound as an alternative way and subsequently minimize such an upper bound by properly designing the filter gain at each time step. Finally, an illustrative example is presented to show the effectiveness of the provided filtering algorithm.\",\"PeriodicalId\":409960,\"journal\":{\"name\":\"2018 Chinese Control And Decision Conference (CCDC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Chinese Control And Decision Conference (CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2018.8407936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Chinese Control And Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2018.8407936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类具有随机非线性和测量缺失的非线性系统的事件触发弹性滤波问题。随机发生的非线性现象和缺失的测量都是用伯努利分布随机变量来描述的,而伯努利分布随机变量的发生概率是不确定的。在数据传输过程中引入事件触发通信机制,节省网络带宽。此外,滤波器增益扰动采用范数有界不确定性来表征。本文的目的是开发一种针对随机非线性和缺失测量的鲁棒事件触发弹性滤波算法。注意,滤波误差协方差的解析表达式不能直接计算。因此,我们推导出它的上界作为一种替代方法,并随后通过适当设计每个时间步长的滤波器增益来最小化这样的上界。最后,通过实例验证了所提滤波算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Event-triggered Resilient Filtering for Time-varying Systems with Randomly Occurring Nonlinearity and Missing Measurements
This paper studies the event-triggered resilient filtering problem for a class of nonlinear systems with randomly occurring nonlinearity and missing measurements. Both the phenomena of the randomly occurring nonlinearity and the missing measurements are described by Bernoulli distributed random variables, where the occurrence probabilities could be uncertain. The event-triggered communication mechanism is introduced to save the network bandwidth during the data transmissions through the network. Additionally, the filter gain perturbations are characterized by employing the norm bounded uncertainties. The aim of the paper is to develop a robust event-triggered resilient filtering algorithm against the randomly occurring nonlinearity and missing measurements. Note that the analytical expressions of the filtering error covariance cannot be computed directly. Consequently, we derive its upper bound as an alternative way and subsequently minimize such an upper bound by properly designing the filter gain at each time step. Finally, an illustrative example is presented to show the effectiveness of the provided filtering algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An improved K-means algorithm for reciprocating compressor fault diagnosis Bond graph modeling and fault injection of CRH5 traction system Design of human eye information detection system Multi-leak diagnosis and isolation in oil pipelines based on Unscented Kalman filter Local logic optimization algorithm for autonomous mobile robot based on fuzzy logic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1