意大利里拉按LVQ分类

S. Omatu, T. Fujinaka, T. Kosaka, H. Yanagimoto, M. Yoshioka
{"title":"意大利里拉按LVQ分类","authors":"S. Omatu, T. Fujinaka, T. Kosaka, H. Yanagimoto, M. Yoshioka","doi":"10.1109/IJCNN.2001.938846","DOIUrl":null,"url":null,"abstract":"In this paper, a new method to classify the Italian Liras by using the learning vector quantization (LVQ) is proposed. The Italian Liras of 8 kinds, 1000, 2000, 5000, 10000, 50000 (new), 50000 (old), 100000 (new), 100000 (old) Liras with four directions A,B,C, and D are used, where A and B mean the normal direction and the upside down direction and C and D mean the reverse version of A and B. The original image with 128 by 64 pixels is observed at the transaction machine in which rotation and shift are included. After correction of these effects, we select a suitable area which shows the bill image and feed the image with 64 by 15 pixels to a neural network. Although the neural network of the LVQ type can process in any order of the dimension of the input data, the smaller size is better to achieve a faster convergence.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Italian Lira classification by LVQ\",\"authors\":\"S. Omatu, T. Fujinaka, T. Kosaka, H. Yanagimoto, M. Yoshioka\",\"doi\":\"10.1109/IJCNN.2001.938846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new method to classify the Italian Liras by using the learning vector quantization (LVQ) is proposed. The Italian Liras of 8 kinds, 1000, 2000, 5000, 10000, 50000 (new), 50000 (old), 100000 (new), 100000 (old) Liras with four directions A,B,C, and D are used, where A and B mean the normal direction and the upside down direction and C and D mean the reverse version of A and B. The original image with 128 by 64 pixels is observed at the transaction machine in which rotation and shift are included. After correction of these effects, we select a suitable area which shows the bill image and feed the image with 64 by 15 pixels to a neural network. Although the neural network of the LVQ type can process in any order of the dimension of the input data, the smaller size is better to achieve a faster convergence.\",\"PeriodicalId\":346955,\"journal\":{\"name\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"volume\":\"195 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2001.938846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.938846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种基于学习向量量化(LVQ)的意大利里拉分类新方法。使用1000、2000、5000、10000、50000(新)、50000(旧)、100000(新)、100000(旧)里拉8种,A、B、C、D四个方向的意大利里拉,其中A、B表示正方向和倒立方向,C、D表示A、B的反方向。在交易机器上观察到128 × 64像素的原始图像,其中包含旋转和移位。在对这些影响进行校正后,我们选择一个合适的区域来显示账单图像,并将64 × 15像素的图像馈送给神经网络。虽然LVQ类型的神经网络可以对输入数据的任意维序进行处理,但是越小越好,收敛速度越快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Italian Lira classification by LVQ
In this paper, a new method to classify the Italian Liras by using the learning vector quantization (LVQ) is proposed. The Italian Liras of 8 kinds, 1000, 2000, 5000, 10000, 50000 (new), 50000 (old), 100000 (new), 100000 (old) Liras with four directions A,B,C, and D are used, where A and B mean the normal direction and the upside down direction and C and D mean the reverse version of A and B. The original image with 128 by 64 pixels is observed at the transaction machine in which rotation and shift are included. After correction of these effects, we select a suitable area which shows the bill image and feed the image with 64 by 15 pixels to a neural network. Although the neural network of the LVQ type can process in any order of the dimension of the input data, the smaller size is better to achieve a faster convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1