Go Nakamura, T. Shibanoki, K. Shima, Y. Kurita, Masaki Hasegawa, A. Otsuka, Y. Honda, T. Chin, T. Tsuji
{"title":"MyoBock手在虚拟现实环境中的训练系统","authors":"Go Nakamura, T. Shibanoki, K. Shima, Y. Kurita, Masaki Hasegawa, A. Otsuka, Y. Honda, T. Chin, T. Tsuji","doi":"10.1109/BioCAS.2013.6679640","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel EMG-based MyoBock training system that consistently provides a variety of functions ranging from EMG signal control training to task training. Using the proposed training sytem, a trainee controls a virtual hand (VH) in a 3D virtual reality (VR) environment using EMG signals and position/posture information recorded from the trainee. The trainee can also perform tasks such as holding and moving virtual objects using the system. In the experiments of this study, virtual task training developed with reference to the Box and Block Test (BBT) used to evaluate myoelectric prostheses was conducted with two healthy subjects, who repeatedly performed 10 one-minute tasks involving grasping a ball in one box and transporting it to another. The BBT experiments were also conducted in a real environment before and after the virtual training, with results showing an improvement in the number of tasks successfully completed. It was therefore confirmed that the proposed system could be used for myoelectric prosthesis control training.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A training system for the MyoBock hand in a virtual reality environment\",\"authors\":\"Go Nakamura, T. Shibanoki, K. Shima, Y. Kurita, Masaki Hasegawa, A. Otsuka, Y. Honda, T. Chin, T. Tsuji\",\"doi\":\"10.1109/BioCAS.2013.6679640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel EMG-based MyoBock training system that consistently provides a variety of functions ranging from EMG signal control training to task training. Using the proposed training sytem, a trainee controls a virtual hand (VH) in a 3D virtual reality (VR) environment using EMG signals and position/posture information recorded from the trainee. The trainee can also perform tasks such as holding and moving virtual objects using the system. In the experiments of this study, virtual task training developed with reference to the Box and Block Test (BBT) used to evaluate myoelectric prostheses was conducted with two healthy subjects, who repeatedly performed 10 one-minute tasks involving grasping a ball in one box and transporting it to another. The BBT experiments were also conducted in a real environment before and after the virtual training, with results showing an improvement in the number of tasks successfully completed. It was therefore confirmed that the proposed system could be used for myoelectric prosthesis control training.\",\"PeriodicalId\":344317,\"journal\":{\"name\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioCAS.2013.6679640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2013.6679640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A training system for the MyoBock hand in a virtual reality environment
This paper proposes a novel EMG-based MyoBock training system that consistently provides a variety of functions ranging from EMG signal control training to task training. Using the proposed training sytem, a trainee controls a virtual hand (VH) in a 3D virtual reality (VR) environment using EMG signals and position/posture information recorded from the trainee. The trainee can also perform tasks such as holding and moving virtual objects using the system. In the experiments of this study, virtual task training developed with reference to the Box and Block Test (BBT) used to evaluate myoelectric prostheses was conducted with two healthy subjects, who repeatedly performed 10 one-minute tasks involving grasping a ball in one box and transporting it to another. The BBT experiments were also conducted in a real environment before and after the virtual training, with results showing an improvement in the number of tasks successfully completed. It was therefore confirmed that the proposed system could be used for myoelectric prosthesis control training.