{"title":"反映内源性节律的深部脑刺激方案在终止癫痫发作方面显示出更高的功效","authors":"Tiwalade Sobayo, D. Mogul","doi":"10.1109/NER.2015.7146612","DOIUrl":null,"url":null,"abstract":"Deep brain stimulation (DBS) is a potentially potent means for disrupting the aberrant rhythms that arise during a seizure. However, current DBS strategies typically employed are formulated a priori and do not reflect dynamics within the brain during ictogenesis which may severely limit stimulation efficacy. This study investigated how DBS could be improved using endogenous dynamics to inform stimulation protocols. Multi-site brain dynamics within the circuit of Papez was calculated in a chronic rat limbic epilepsy model. Stimulation/recording electrodes were placed in the CA3 region of both hippocampi and in the anteromedial nucleus of the thalamus. Deconvolution of signals using empirical mode decomposition and coherence analysis were used to identify key dynamics as seizures progressed. Synchronization of field potentials across sites occurred as both spontaneous and evoked seizures naturally terminated. The location and frequency of synchrony varied between subjects suggesting that endogenous rhythms during natural seizure termination may vary in humans as well. DBS efficacy was significantly more effective at stopping seizures when the frequency of multisite synchronized stimulation reflected endogenous synchrony dynamics observed in each subject. Thus, tailoring DBS protocols to individual endogenous rhythms that may represent how brains naturally resolve epileptic seizures could play a critical role in improving overall efficacy of this potentially important therapy.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"283 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep brain stimulation protocols that mirror endogenous rhythms show increased efficacy at terminating seizures\",\"authors\":\"Tiwalade Sobayo, D. Mogul\",\"doi\":\"10.1109/NER.2015.7146612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep brain stimulation (DBS) is a potentially potent means for disrupting the aberrant rhythms that arise during a seizure. However, current DBS strategies typically employed are formulated a priori and do not reflect dynamics within the brain during ictogenesis which may severely limit stimulation efficacy. This study investigated how DBS could be improved using endogenous dynamics to inform stimulation protocols. Multi-site brain dynamics within the circuit of Papez was calculated in a chronic rat limbic epilepsy model. Stimulation/recording electrodes were placed in the CA3 region of both hippocampi and in the anteromedial nucleus of the thalamus. Deconvolution of signals using empirical mode decomposition and coherence analysis were used to identify key dynamics as seizures progressed. Synchronization of field potentials across sites occurred as both spontaneous and evoked seizures naturally terminated. The location and frequency of synchrony varied between subjects suggesting that endogenous rhythms during natural seizure termination may vary in humans as well. DBS efficacy was significantly more effective at stopping seizures when the frequency of multisite synchronized stimulation reflected endogenous synchrony dynamics observed in each subject. Thus, tailoring DBS protocols to individual endogenous rhythms that may represent how brains naturally resolve epileptic seizures could play a critical role in improving overall efficacy of this potentially important therapy.\",\"PeriodicalId\":137451,\"journal\":{\"name\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"283 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2015.7146612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2015.7146612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep brain stimulation protocols that mirror endogenous rhythms show increased efficacy at terminating seizures
Deep brain stimulation (DBS) is a potentially potent means for disrupting the aberrant rhythms that arise during a seizure. However, current DBS strategies typically employed are formulated a priori and do not reflect dynamics within the brain during ictogenesis which may severely limit stimulation efficacy. This study investigated how DBS could be improved using endogenous dynamics to inform stimulation protocols. Multi-site brain dynamics within the circuit of Papez was calculated in a chronic rat limbic epilepsy model. Stimulation/recording electrodes were placed in the CA3 region of both hippocampi and in the anteromedial nucleus of the thalamus. Deconvolution of signals using empirical mode decomposition and coherence analysis were used to identify key dynamics as seizures progressed. Synchronization of field potentials across sites occurred as both spontaneous and evoked seizures naturally terminated. The location and frequency of synchrony varied between subjects suggesting that endogenous rhythms during natural seizure termination may vary in humans as well. DBS efficacy was significantly more effective at stopping seizures when the frequency of multisite synchronized stimulation reflected endogenous synchrony dynamics observed in each subject. Thus, tailoring DBS protocols to individual endogenous rhythms that may represent how brains naturally resolve epileptic seizures could play a critical role in improving overall efficacy of this potentially important therapy.