{"title":"利用新的GNSS科学机会的数据密集型方法","authors":"V. Navarro, J. Ventura-Traveset","doi":"10.4995/cigeo2021.2021.12740","DOIUrl":null,"url":null,"abstract":"With the current GNSS infrastructure development plans, over 120 GNSS satellites (including European Galileo satellites)will provide, already this decade, continuous data, in several frequencies, without interruption and on a permanent basis.This global and permanent GNSS infrastructure constitutes a major opportunity for GNSS science applications. In themeantime, recent advances in technology have contributed \"de-facto\" to the deployment of a large GNSS receiver arraybased on Internet of Things (IoT), affordable smart devices easy to find in everybody’s pockets. These devices – evolvingfast at each new generation – feature an increasing number of capabilities and sensors able to collect a variety ofmeasurements, improving GNSS performance. Among these capabilities, Galileo dual band smartphones receivers andAndroid’s support for raw GNSS data recording represent major steps forward for Positioning, Navigation and Timing (PNT)data processing improvements. Information gathering from these devices, commonly referred as crowdsourcing, opensthe door to new data-intensive analysis techniques in many science domains. At this point, collaboration between variousresearch groups is essential to harness the potential hidden behind the large volumes of data generated by thiscyberinfrastructure. Cloud Computing technologies extend traditional computational boundaries, enabling execution ofprocessing components close to the data. This paradigm shift offers seamless execution of interactive algorithms andanalytics, skipping lengthy downloads and setups. The resulting scenario, defined by a GNSS Big Data repository with colocatedprocessing capabilities, sets an excellent basis for the application of Artificial Intelligence / Machine Learning (ML)technologies in the context of GNSS. This unique opportunity for science has been recognized by the European SpaceAgency (ESA) with the creation of the Navigation Scientific Office, which leverages on GNSS infrastructure to deliverinnovative solutions across multiple scientific domains.","PeriodicalId":145404,"journal":{"name":"Proceedings - 3rd Congress in Geomatics Engineering - CIGeo","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DATA-INTENSIVE APPROACH TO EXPLOIT NEW GNSS SCIENCE OPPORTUNITIES\",\"authors\":\"V. Navarro, J. Ventura-Traveset\",\"doi\":\"10.4995/cigeo2021.2021.12740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the current GNSS infrastructure development plans, over 120 GNSS satellites (including European Galileo satellites)will provide, already this decade, continuous data, in several frequencies, without interruption and on a permanent basis.This global and permanent GNSS infrastructure constitutes a major opportunity for GNSS science applications. In themeantime, recent advances in technology have contributed \\\"de-facto\\\" to the deployment of a large GNSS receiver arraybased on Internet of Things (IoT), affordable smart devices easy to find in everybody’s pockets. These devices – evolvingfast at each new generation – feature an increasing number of capabilities and sensors able to collect a variety ofmeasurements, improving GNSS performance. Among these capabilities, Galileo dual band smartphones receivers andAndroid’s support for raw GNSS data recording represent major steps forward for Positioning, Navigation and Timing (PNT)data processing improvements. Information gathering from these devices, commonly referred as crowdsourcing, opensthe door to new data-intensive analysis techniques in many science domains. At this point, collaboration between variousresearch groups is essential to harness the potential hidden behind the large volumes of data generated by thiscyberinfrastructure. Cloud Computing technologies extend traditional computational boundaries, enabling execution ofprocessing components close to the data. This paradigm shift offers seamless execution of interactive algorithms andanalytics, skipping lengthy downloads and setups. The resulting scenario, defined by a GNSS Big Data repository with colocatedprocessing capabilities, sets an excellent basis for the application of Artificial Intelligence / Machine Learning (ML)technologies in the context of GNSS. This unique opportunity for science has been recognized by the European SpaceAgency (ESA) with the creation of the Navigation Scientific Office, which leverages on GNSS infrastructure to deliverinnovative solutions across multiple scientific domains.\",\"PeriodicalId\":145404,\"journal\":{\"name\":\"Proceedings - 3rd Congress in Geomatics Engineering - CIGeo\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings - 3rd Congress in Geomatics Engineering - CIGeo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/cigeo2021.2021.12740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings - 3rd Congress in Geomatics Engineering - CIGeo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/cigeo2021.2021.12740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A DATA-INTENSIVE APPROACH TO EXPLOIT NEW GNSS SCIENCE OPPORTUNITIES
With the current GNSS infrastructure development plans, over 120 GNSS satellites (including European Galileo satellites)will provide, already this decade, continuous data, in several frequencies, without interruption and on a permanent basis.This global and permanent GNSS infrastructure constitutes a major opportunity for GNSS science applications. In themeantime, recent advances in technology have contributed "de-facto" to the deployment of a large GNSS receiver arraybased on Internet of Things (IoT), affordable smart devices easy to find in everybody’s pockets. These devices – evolvingfast at each new generation – feature an increasing number of capabilities and sensors able to collect a variety ofmeasurements, improving GNSS performance. Among these capabilities, Galileo dual band smartphones receivers andAndroid’s support for raw GNSS data recording represent major steps forward for Positioning, Navigation and Timing (PNT)data processing improvements. Information gathering from these devices, commonly referred as crowdsourcing, opensthe door to new data-intensive analysis techniques in many science domains. At this point, collaboration between variousresearch groups is essential to harness the potential hidden behind the large volumes of data generated by thiscyberinfrastructure. Cloud Computing technologies extend traditional computational boundaries, enabling execution ofprocessing components close to the data. This paradigm shift offers seamless execution of interactive algorithms andanalytics, skipping lengthy downloads and setups. The resulting scenario, defined by a GNSS Big Data repository with colocatedprocessing capabilities, sets an excellent basis for the application of Artificial Intelligence / Machine Learning (ML)technologies in the context of GNSS. This unique opportunity for science has been recognized by the European SpaceAgency (ESA) with the creation of the Navigation Scientific Office, which leverages on GNSS infrastructure to deliverinnovative solutions across multiple scientific domains.