{"title":"基于多视角兴趣表示的人气增强新闻推荐","authors":"Jingkun Wang, Yipu Chen, Zichun Wang, Wen Zhao","doi":"10.1145/3459637.3482462","DOIUrl":null,"url":null,"abstract":"News recommendation is of vital importance to alleviating in-formation overload. Recent research shows that precise modeling of news content and user interests become critical for news rec-ommendation. Existing methods usually utilize information such as news title, abstract, entities to predict Click Through Rate(CTR) or add some auxiliary tasks to a multi-task learning framework. However, none of them directly consider predicted news popularity and the degree of users' attention to popular news into the CTR prediction results. Meanwhile, multiple inter-ests may arise throughout users' browsing history. Thus it is hard to represent user interests via a single user vector. In this paper, we propose PENR, a Popularity-Enhanced News Recommenda-tion method, which integrates popularity prediction task to im-prove the performance of the news encoder. News popularity score is predicted and added to the final CTR, while news popu-larity is utilized to model the degree of users' tendency to follow hot news. Moreover, user interests are modeled from different perspectives via a subspace projection method that assembles the browsing history to multiple subspaces. In this way, we capture users' multi-view interest representations. Experiments on a real-world dataset validate the effectiveness of our PENR approach.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Popularity-Enhanced News Recommendation with Multi-View Interest Representation\",\"authors\":\"Jingkun Wang, Yipu Chen, Zichun Wang, Wen Zhao\",\"doi\":\"10.1145/3459637.3482462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"News recommendation is of vital importance to alleviating in-formation overload. Recent research shows that precise modeling of news content and user interests become critical for news rec-ommendation. Existing methods usually utilize information such as news title, abstract, entities to predict Click Through Rate(CTR) or add some auxiliary tasks to a multi-task learning framework. However, none of them directly consider predicted news popularity and the degree of users' attention to popular news into the CTR prediction results. Meanwhile, multiple inter-ests may arise throughout users' browsing history. Thus it is hard to represent user interests via a single user vector. In this paper, we propose PENR, a Popularity-Enhanced News Recommenda-tion method, which integrates popularity prediction task to im-prove the performance of the news encoder. News popularity score is predicted and added to the final CTR, while news popu-larity is utilized to model the degree of users' tendency to follow hot news. Moreover, user interests are modeled from different perspectives via a subspace projection method that assembles the browsing history to multiple subspaces. In this way, we capture users' multi-view interest representations. Experiments on a real-world dataset validate the effectiveness of our PENR approach.\",\"PeriodicalId\":405296,\"journal\":{\"name\":\"Proceedings of the 30th ACM International Conference on Information & Knowledge Management\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM International Conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3459637.3482462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Popularity-Enhanced News Recommendation with Multi-View Interest Representation
News recommendation is of vital importance to alleviating in-formation overload. Recent research shows that precise modeling of news content and user interests become critical for news rec-ommendation. Existing methods usually utilize information such as news title, abstract, entities to predict Click Through Rate(CTR) or add some auxiliary tasks to a multi-task learning framework. However, none of them directly consider predicted news popularity and the degree of users' attention to popular news into the CTR prediction results. Meanwhile, multiple inter-ests may arise throughout users' browsing history. Thus it is hard to represent user interests via a single user vector. In this paper, we propose PENR, a Popularity-Enhanced News Recommenda-tion method, which integrates popularity prediction task to im-prove the performance of the news encoder. News popularity score is predicted and added to the final CTR, while news popu-larity is utilized to model the degree of users' tendency to follow hot news. Moreover, user interests are modeled from different perspectives via a subspace projection method that assembles the browsing history to multiple subspaces. In this way, we capture users' multi-view interest representations. Experiments on a real-world dataset validate the effectiveness of our PENR approach.