一种水产养殖池塘脱气入口结构

Joshua M. A. Caasi, E. Krebs, Nathan Huysman, J. Voorhees, M. E. Barnes
{"title":"一种水产养殖池塘脱气入口结构","authors":"Joshua M. A. Caasi, E. Krebs, Nathan Huysman, J. Voorhees, M. E. Barnes","doi":"10.4236/wjet.2020.82013","DOIUrl":null,"url":null,"abstract":"Structures separating fish hatchery ponds from open spring water sources must restrict fish movement from the pond to the spring, allow for constant water flow, and potentially reduce incoming spring water gas supersaturation. This article describes a novel inlet structure that fulfills those requirements. In addition, it requires minimal maintenance, and allows for the quick and easy removal of debris in the event of partial plugging. This simple aluminum structure consists of a mount for attachment to the inflow pipe and a terminal splash plate with aeration holes. The splash plate is perpendicular to the water flow during normal operations to both prevent fish from jumping into the pipe and aerate the incoming water. However, it can be easily swiveled upward for the efficient removal of debris. Use of the inlet structure consistently decreased gas supersaturation in the spring water as it entered the fish production pond. By decreasing gas levels and maintaining water flows, potentially hazardous fish health issues can be avoided by using this structure. In addition, this relatively inexpensive and simple device will greatly reduce the labor required for removing debris compared to traditional screens.","PeriodicalId":344331,"journal":{"name":"World Journal of Engineering and Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Degassing Inlet Structure for Aquaculture Ponds\",\"authors\":\"Joshua M. A. Caasi, E. Krebs, Nathan Huysman, J. Voorhees, M. E. Barnes\",\"doi\":\"10.4236/wjet.2020.82013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structures separating fish hatchery ponds from open spring water sources must restrict fish movement from the pond to the spring, allow for constant water flow, and potentially reduce incoming spring water gas supersaturation. This article describes a novel inlet structure that fulfills those requirements. In addition, it requires minimal maintenance, and allows for the quick and easy removal of debris in the event of partial plugging. This simple aluminum structure consists of a mount for attachment to the inflow pipe and a terminal splash plate with aeration holes. The splash plate is perpendicular to the water flow during normal operations to both prevent fish from jumping into the pipe and aerate the incoming water. However, it can be easily swiveled upward for the efficient removal of debris. Use of the inlet structure consistently decreased gas supersaturation in the spring water as it entered the fish production pond. By decreasing gas levels and maintaining water flows, potentially hazardous fish health issues can be avoided by using this structure. In addition, this relatively inexpensive and simple device will greatly reduce the labor required for removing debris compared to traditional screens.\",\"PeriodicalId\":344331,\"journal\":{\"name\":\"World Journal of Engineering and Technology\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/wjet.2020.82013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/wjet.2020.82013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

将鱼类孵化池与开放的泉水水源分开的结构必须限制鱼类从池塘到泉水的运动,允许恒定的水流,并潜在地减少进入的泉水气体过饱和。本文介绍了一种满足这些要求的新型进气道结构。此外,它需要最少的维护,并且在部分堵塞的情况下可以快速轻松地清除碎屑。这个简单的铝制结构包括一个安装附件流入管和一个终端飞溅板与曝气孔。在正常操作时,飞溅板垂直于水流,既可以防止鱼跳入管道,又可以使进入的水透气。然而,它可以很容易地向上旋转,以有效地清除碎片。当泉水进入养鱼池时,入口结构的使用始终降低了泉水中的气体过饱和。通过减少气体水平和保持水流,使用这种结构可以避免潜在的有害鱼类健康问题。此外,与传统筛网相比,这种相对便宜和简单的设备将大大减少清除碎片所需的劳动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Degassing Inlet Structure for Aquaculture Ponds
Structures separating fish hatchery ponds from open spring water sources must restrict fish movement from the pond to the spring, allow for constant water flow, and potentially reduce incoming spring water gas supersaturation. This article describes a novel inlet structure that fulfills those requirements. In addition, it requires minimal maintenance, and allows for the quick and easy removal of debris in the event of partial plugging. This simple aluminum structure consists of a mount for attachment to the inflow pipe and a terminal splash plate with aeration holes. The splash plate is perpendicular to the water flow during normal operations to both prevent fish from jumping into the pipe and aerate the incoming water. However, it can be easily swiveled upward for the efficient removal of debris. Use of the inlet structure consistently decreased gas supersaturation in the spring water as it entered the fish production pond. By decreasing gas levels and maintaining water flows, potentially hazardous fish health issues can be avoided by using this structure. In addition, this relatively inexpensive and simple device will greatly reduce the labor required for removing debris compared to traditional screens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Influencing Factors of Reservoir Construction Risk Based on Interpretative Structural Modeling Preliminary Exploration on the Application of Saussure Sign Concept in Bio-Inspired Design: A Case of Tiantoushui Doll-Design Comparative Analysis of Hybrid Controllers of Done Systems (UPFC) and Interphase Power Regulators Type RPI 30p15 on Contingency Management in Electrical Networks Bureaucratic Factors Impeding the Delivery of Infrastructure at the Metropolitan Municipal and District Assemblies (MMDAs) in Ghana Summary of Application of Fuzzy Mathematics in Construction Project Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1