神经康复机器人外骨骼的自适应控制

Tommaso Proietti, N. Jarrassé, A. Roby-Brami, G. Morel
{"title":"神经康复机器人外骨骼的自适应控制","authors":"Tommaso Proietti, N. Jarrassé, A. Roby-Brami, G. Morel","doi":"10.1109/NER.2015.7146745","DOIUrl":null,"url":null,"abstract":"Neurorehabilitation efficiency increases with therapy intensity and subject's involvement during physical exercises. Robotic exoskeletons could bring both features, if they could adapt the level of assistance to patient's motor capacities. To this aim, we developed an exoskeleton controller, based on adaptive techniques, that can actively modulate the stiffness of the robotic device in function of the subject's activity. We tested this control law on one healthy subject with an upper-limb exoskeleton. The experiment consisted in learning a trajectory imposed by the robot. The early results show the different features allowed by our controller with respect to controllers commonly used for neurorehabilitation with exoskeletons.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Adaptive control of a robotic exoskeleton for neurorehabilitation\",\"authors\":\"Tommaso Proietti, N. Jarrassé, A. Roby-Brami, G. Morel\",\"doi\":\"10.1109/NER.2015.7146745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neurorehabilitation efficiency increases with therapy intensity and subject's involvement during physical exercises. Robotic exoskeletons could bring both features, if they could adapt the level of assistance to patient's motor capacities. To this aim, we developed an exoskeleton controller, based on adaptive techniques, that can actively modulate the stiffness of the robotic device in function of the subject's activity. We tested this control law on one healthy subject with an upper-limb exoskeleton. The experiment consisted in learning a trajectory imposed by the robot. The early results show the different features allowed by our controller with respect to controllers commonly used for neurorehabilitation with exoskeletons.\",\"PeriodicalId\":137451,\"journal\":{\"name\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2015.7146745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2015.7146745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

神经康复效率随治疗强度和受试者参与体育锻炼而增加。如果机器人外骨骼能够根据病人的运动能力调整辅助水平,它们就能实现这两种功能。为此,我们开发了一种基于自适应技术的外骨骼控制器,该控制器可以根据受试者的活动主动调节机器人设备的刚度。我们在一个有上肢外骨骼的健康受试者身上测试了这个控制律。实验包括学习机器人施加的轨迹。早期的结果显示了我们的控制器与通常用于外骨骼神经康复的控制器所允许的不同特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive control of a robotic exoskeleton for neurorehabilitation
Neurorehabilitation efficiency increases with therapy intensity and subject's involvement during physical exercises. Robotic exoskeletons could bring both features, if they could adapt the level of assistance to patient's motor capacities. To this aim, we developed an exoskeleton controller, based on adaptive techniques, that can actively modulate the stiffness of the robotic device in function of the subject's activity. We tested this control law on one healthy subject with an upper-limb exoskeleton. The experiment consisted in learning a trajectory imposed by the robot. The early results show the different features allowed by our controller with respect to controllers commonly used for neurorehabilitation with exoskeletons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
iNODE in-vivo testing for selective vagus nerve recording and stimulation Computational studies on urinary bladder smooth muscle: Modeling ion channels and their role in generating electrical activity Fast calibration of a thirteen-command BCI by simulating SSVEPs from trains of transient VEPs - towards time-domain SSVEP BCI paradigms A hybrid NMES-exoskeleton for real objects interaction Computationally efficient, configurable, causal, real-time phase detection applied to local field potential oscillations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1