高输入动态范围下GaAs增强HEMT俘获效应的表征与建模

Lei Huang, Huan-Zhu Wang, Qingzhi Wu, Shuman Mao, Yuehang Xu
{"title":"高输入动态范围下GaAs增强HEMT俘获效应的表征与建模","authors":"Lei Huang, Huan-Zhu Wang, Qingzhi Wu, Shuman Mao, Yuehang Xu","doi":"10.1109/ICTA56932.2022.9963103","DOIUrl":null,"url":null,"abstract":"Trapping effects (TE) have significant influence on device performances, including Pulse-IV, scattering parameters and linearity. Due to its slight influence on GaAs high electron mobility transistors (HEMTs), the TE are always neglected in compact models like EE-HEMT. In this paper, we present a physical-based quasi-physical zone division (QPZD) large-signal model and the TE is characterized by using simplified Shockley-Read-Hall (SRH) model, which can characterize the dynamic process of electron capture and emission. The results show that a more accurate model is obtained with TE taken into consideration, which can characterize the Pulse-IV and radio frequency (RF) performance with less errors, especially the linearity of GaAs HEMTs under two-tone excitation with high input dynamic range.","PeriodicalId":325602,"journal":{"name":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization and Modeling of Trapping Effects in GaAs Enhanced HEMT under High Input Dynamic Range\",\"authors\":\"Lei Huang, Huan-Zhu Wang, Qingzhi Wu, Shuman Mao, Yuehang Xu\",\"doi\":\"10.1109/ICTA56932.2022.9963103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trapping effects (TE) have significant influence on device performances, including Pulse-IV, scattering parameters and linearity. Due to its slight influence on GaAs high electron mobility transistors (HEMTs), the TE are always neglected in compact models like EE-HEMT. In this paper, we present a physical-based quasi-physical zone division (QPZD) large-signal model and the TE is characterized by using simplified Shockley-Read-Hall (SRH) model, which can characterize the dynamic process of electron capture and emission. The results show that a more accurate model is obtained with TE taken into consideration, which can characterize the Pulse-IV and radio frequency (RF) performance with less errors, especially the linearity of GaAs HEMTs under two-tone excitation with high input dynamic range.\",\"PeriodicalId\":325602,\"journal\":{\"name\":\"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTA56932.2022.9963103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTA56932.2022.9963103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

捕获效应(TE)对器件性能有重要影响,包括脉冲iv、散射参数和线性度。由于TE对GaAs高电子迁移率晶体管(hemt)的影响较小,因此在诸如EE-HEMT等紧凑模型中往往被忽略。本文提出了一种基于物理的准物理区域划分(QPZD)大信号模型,并采用简化的Shockley-Read-Hall (SRH)模型对TE进行表征,该模型可以表征电子捕获和发射的动态过程。结果表明,考虑TE的模型更为精确,能够以较小的误差表征脉冲iv和射频(RF)性能,特别是在高输入动态范围的双音激励下GaAs hemt的线性度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization and Modeling of Trapping Effects in GaAs Enhanced HEMT under High Input Dynamic Range
Trapping effects (TE) have significant influence on device performances, including Pulse-IV, scattering parameters and linearity. Due to its slight influence on GaAs high electron mobility transistors (HEMTs), the TE are always neglected in compact models like EE-HEMT. In this paper, we present a physical-based quasi-physical zone division (QPZD) large-signal model and the TE is characterized by using simplified Shockley-Read-Hall (SRH) model, which can characterize the dynamic process of electron capture and emission. The results show that a more accurate model is obtained with TE taken into consideration, which can characterize the Pulse-IV and radio frequency (RF) performance with less errors, especially the linearity of GaAs HEMTs under two-tone excitation with high input dynamic range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 4.2-to-5.6 GHz Transformer-Based PMOS-only Stacked-gm VCO in 28-nm CMOS A 0.58-pJ/bit 56-Gb/s PAM-4 Optical Receiver Frontend with an Envelope Tracker for Co-Packaged Optics in 40-nm CMOS CVD Monolayer tungsten-based PMOS Transistor with high performance at Vds = -1 V A 1000 fps Spiking Neural Network Tracking Algorithm for On-Chip Processing of Dynamic Vision Sensor Data Hardware Based RISC-V Instruction Set Randomization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1